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Executive Summary  
 

Remote sensing of water quality in freshwater lakes and rivers continues to be a highly 
researched topic due to the great need and potential for monitoring over large areas and time 
periods. Results from previous studies suggest that remote sensing can be used to effectively 
monitor water quality in large water bodies such as Lake Tahoe. However, most previous studies 
have focused on mid-lake in-situ water quality measurements related to suspended constituents 
for developing correlations and making predictions with remote sensing data.  Developing 
correlations and making predictions in the nearshore is potentially more challenging than at mid-
lake locations due to reflectance from the nearshore lake bottom and the potential for mixed land 
and water reflectance for pixels near the water’s edge. The objective of this study was to assess 
the potential for monitoring nearshore periphyton at Lake Tahoe, using Landsat satellite imagery 
that is atmospherically corrected using standard algorithms and is freely available for operational 
applications. In-situ periphyton data collected during both routine and synoptic sampling 
campaigns going as far back as 1984 was paired with cloud-free Landsat satellite imagery 
processed using the Google Earth Engine cloud computing platform in order to explore statistical 
relationships between Landsat surface reflectance and periphyton chlorophyll-a, with the goal of 
developing a predictive algorithm and enable the use of remote sensing for historical and 
operational monitoring of algae within the nearshore.  

Results indicate that a universal algorithm for all seasons lacked sufficient correlation and 
skill in predicting water quality metrics associate with algae (e.g. plant biomass index and 
chlorophyll-a). Lack of correlation and predictive skill is due to a combination of variations in 
bottom characteristics and type, non-unique sources of reflectance, spatial heterogeneity at each 
in-situ sampling site, low signal to noise of surface reflectance from water, image geolocation 
accuracy, and image spatial resolution. However, site specific algorithms controlled for 
seasonality had acceptable correlation with in-situ periphyton chlorophyll-a concentration and 
showed promise for prediction. More specifically, application of season specific multivariate 
regressions with Landsat data demonstrated the potential for historical and operational prediction 
of water quality metrics during time periods with little to no in-situ measurements. Computed 
anomalies of satellite-based water quality metrics, both as maps and time series, also correlated 
well to periods of known high and low algae concentrations.  
  
Major Findings 

• Historical data analysis shows large seasonal variability with highest concentrations in 
the spring and winter  

• The development of a universal algorithm that had acceptable correlation with in-situ 
periphyton chlorophyll-a concentrations was not possible due to variations in bottom 
type, spatial heterogeneity at each in-situ sampling site, low signal to noise of surface 
reflectance from water, image geolocation accuracy, and image spatial resolution 

• Site and season specific algorithms using multiple Landsat surface reflectance bands and 
multivariate regression had higher correlation with in-situ periphyton chlorophyll-a 
concentrations 
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• Predictions of in-situ periphyton chlorophyll-a illustrate the potential for operational 
monitoring and gap filling of historic datasets, where the predictions have the same 
amount of temporal variability as the in-situ observations 

• Relative periphyton chlorophyll concentration and biomass can be achieved through 
anomaly mapping and analysis of various Landsat water quality indices via the Climate 
Engine cloud computing application (app.climateengine.org)  

• Historical and operational monitoring of nearshore periphyton chlorophyll-a and biomass 
may be possible at specific sites throughout the Tahoe Basin 

• Targeted sampling during satellite overpass days, documenting GPS locations for each 
in-situ sample would likely improve site specific correlations and prediction accuracy 

• Integrating the use of new free and operational satellite data, such as Sentinel 2 and 
Sentinel 3, with Landsat and into cloud computing platforms such as Climate Engine has 
the potential to greatly improve monitoring through improved temporal and spectral 
resolution 

 
The use of remote sensing is a feasible option for monitoring nearshore water quality at Lake 

Tahoe, however, there are challenges. Integration and use of new satellite data combined with 
targeted sampling aligned with satellite image acquisition dates could yield long-term benefits 
for monitoring with satellite remote sensing. While other water quality remote sensing platforms 
are available, such as the use of piloted aircraft and drones, these platforms are expensive and 
extremely limited for long term operational monitoring and applications. We believe that 
investing in research and applications that combine in-situ data with freely available satellite 
remote sensing data is the best way for ensuring affordable, sustainable, and scalable long-term 
monitoring capabilities at Lake Tahoe. 
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Introduction 
 The waters that line the shores of Lake Tahoe (Figure 1) are highly valued for their 
aesthetic and recreational qualities. In recent times, Lake Tahoe’s nearshore conditions with 
respect to algae growth have become more evident to visitors, residents, and resource 
management agencies. Possible degradation of nearshore quality through increased algal growth 
on rocks, reductions in water column transparency within mid-lake areas, and the establishment 
and spread of aquatic invasive species (AIS) threaten Tahoe as a waterbody with unique 
aesthetical and ecological functions and status, recreational destination, drinking water source, 
and asset to the local and regional economies. Understanding how to better manage Lake 
Tahoe’s nearshore environment and the areas that affect it is a high priority to stakeholders and 
resource management agencies. An important part of improved management is improved 
knowledge of current status and trends. Developing and implementing cost-effective and reliable 
methods for assessing current status and long-term trends of nearshore water quality, and for 
assessing the effectiveness of new management strategies and actions is needed.  

Through financial support provided by the Tahoe Science Program (TSP) and the 
Nearshore Agency Work Group (NAWG) comprised of the Nevada Division of Environmental 
Protection (NDEP), Lahontan Water Board, Tahoe Regional Planning Agency (TRPA), and 
United States Environmental Protection Agency (US EPA), a science team comprised of the 
Desert Research Institute (DRI), University of Nevada Reno (UNR) and the University of 
California Davis (UCD) collaborated with the TSP and the NAWG to synthesize available 
nearshore information and to develop a comprehensive strategy to monitor and assess nearshore 
health. The resulting Nearshore Evaluation and Monitoring Framework Report (Nearshore 
Report; Heyvaert et al. 2013) put forth a monitoring plan framework aimed at providing a 
comprehensive and integrated assessment of nearshore condition. However, monitoring the ten 
proposed metrics (turbidity, light transmission, chlorophyll, phytoplankton, periphyton, 
macrophytes, benthic macroinvertebrates, fish and crayfish, toxicity and harmful 
microorganisms) is estimated to cost on the order of $500,000 annually. High costs are driven by 
the need for in-situ point monitoring techniques that are both time and labor intensive and 
limited in spatial and temporal extent – all common challenges with in-situ monitoring. Because 
nearshore conditions have the potential to be highly variable in space and time, in-situ field 
monitoring has limited ability to quantify this variability and shed insight on its cause. 
 Offering continuous coverage in time and space at reduced costs, remote sensing has 
been used to complement in-situ monitoring techniques and provide information for areas or 
time periods where no in-situ monitoring exists. Several studies have demonstrated the feasibility 
of estimating chlorophyll-a, colored dissolved organic matter (CDOM), and total suspended 
sediment concentrations (TSS) in lakes from multi-spectral satellite, airborne, and Unmanned 
Aerial System (UAS) platforms (Allan et al. 2011; Brezonik et al. 2005; Torbick et al. 2008; 
Zang et. al. 2012). Steissberg et al. (2010) developed useful empirical relationships at Lake 
Tahoe between low spatial resolution satellite derived water quality indices and mid-lake in-situ 
water quality measurements of turbidity, Secchi disk, and chlorophyll-a. Additionally, previous 
studies by the PIs relating paired Landsat satellite imagery to in-situ water quality measurements 
for many western Nevada reservoirs have proven useful for evaluating spatial and temporal 
distributions and trends of TSS and Secchi disk (Pahl and Huntington, 2010).  
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 Given the success of previous studies, assessing the potential for remote sensing to offer 
an effective, low-cost technique to monitor water quality over large areas and time periods, and 
to complement and support routine and synoptic in-situ measurements for Lake Tahoe’s 
nearshore environment is warranted. Of specific interest is the ability to monitor Periphyton. 
Periphyton is form of attached algae that reflects both local nutrient loading and long-term 
environmental fluctuations (i.e. climate, temperature, runoff, etc.). Application of remote sensing 
techniques for monitoring water quality at Lake Tahoe is not without significant challenges, 
especially since Lake Tahoe has much greater clarity than lakes where remote sensing shown 
great promise for monitoring water quality. Challenges are associated with atmospheric 
correction and obtaining more signal than noise in measured at-surface reflectance, and the fact 
that the water column contains a mix of water quality constituents, such as colored dissolved 
organic matter (CDOM), chlorophyll-a, and TSS. More specifically, different combinations of 
CDOM, chlorophyll, and turbidity can return similar spectral signals, therefore inverse modeling 
is often required to simulate the optical properties of the water by varying constituent 
concentrations until the model results match the remotely sensed or measured optical properties. 
Empirical relationships can be made with historical in-situ water quality measurements and 
paired remote sensing data; however, many observations are needed covering a wide variety of 
water quality conditions.  
 
Objectives 

The objective of this study was to assess the potential for operational monitoring 
nearshore periphyton at Lake Tahoe using Landsat satellite imagery that is atmospherically 
corrected using standard algorithms and is freely available for operational applications. To do so 
in-situ periphyton data collected during both routine and synoptic sampling campaigns at 50 sites 
and at approximately monthly time steps, going as far back as 1984 was quality assured and 
controlled, organized, and paired with Landsat satellite imagery in order to explore statistical 
relationships between Landsat surface reflectance and periphyton chlorophyll-a, with the 
ultimate goal of developing a predictive algorithm to enable the use of remote sensing and new 
cloud computing technologies for historical and operational monitoring of periphyton within the 
nearshore.  

 
Study Location 

Lake Tahoe is a large freshwater lake located in the Sierra Nevada Mountains on the 
border of California and Nevada. The lake has a maximum depth of 501 m (1,645 ft) and surface 
area of 490 km2 (191 mi2). Approximately two-thirds of Lake Tahoe Basin parent material is 
granitic and one-third is volcanic. The Lake Tahoe Watershed covers 1,310 km2 (505 mi2) and 
drains into the lake via 63 tributaries. Runoff accounts for approximately half the annual water 
input, while direct precipitation to the lake in the form of rain and snow accounts for the other 
half. Lake Tahoe Basin climate is characterized by warm dry summers and cold wet winters. The 
majority of precipitation falls as snow between November and April with a distinct west to east 
rain shadow effect. Mean annual precipitation on the west side of the basin is approximately 86 
cm, and almost double the 46 cm measured on the east side of the basin.  
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Lake Tahoe’s large volume, surface area to watershed area ratio, and low nutrient soils 
make for extremely high purity water. However, increased nutrient and sediment loading have 
decreased clarity and increased algae growth since monitoring began in the 1960s. Secchi disk 
measurements in the center of the lake have decreased from 30.5 to 21.3 m, while trends in 
nearshore degradation and algae outbreaks are not well documented nor understood. The 
nearshore encompasses area from the lake’s edge to a depth contour where the thermocline 
intersects the lake bed in mid-summer (minimum width of 350ft; Heyvaert, 2013). Tahoe’s water 
quality and clarity support a unique ecosystem and a large tourism-based economy with the 
nearshore zone serving as the primary area for public interaction and visibility. Protecting 
Tahoe’s environment and water quality has become public issue with multiple agencies and 
stakeholders supporting large efforts to track and mitigate further degradation. 

 
Figure 1: Map of the Lake Tahoe Basin showing both the Routine (red) and Synoptic (green) nearshore 
periphyton sampling locations.   
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Data 
Nearshore water quality datasets collected and processed by UC Davis contained 

historical periphyton data from both Routine and Synoptic sampling campaigns. Throughout this 
report, chlorophyll-a refers to periphyton chlorophyll and is representative of algae biomass. 
Routine sampling occurs at nine nearshore sites throughout the lake on a monthly to quarterly 
basis, while spring synoptic sampling occurs at an additional forty locations during the period of 
the spring maximum (Figure 1). Sampling coverage varies from site to site, but extends as far 
back as 1982. All periphyton samples are collected at a consistent depth of 0.5 m regardless of 
lake level (TERC, 2017). The Periphyton dataset was processed for Quality Assurance and 
Control (QAQC) and organized for pairing with remote sensing datasets. 

Landsat at-surface (SR) and top-of-atmosphere (TOA) data was extracted from the USGS 
Tier 1 collections via the Google Earth Engine Python Application Programming Interface (API) 
(Gorelick, 2017). The Google Earth Engine cloud computing platform provides a collections of 
historic satellite imagery and other geospatial datasets for near real-time access and on-the-fly 
processing. During the study, the USGS released the updated Tier 1 Landsat collections with 
improved data quality and calibrations (USGS, 2018a,b). Initial work and presentations were 
based on the older (now retired) collections; however, all results presented here are based on the 
updated collections.  

Satellite band ratios and chlorophyll estimates were calculated from unique band 
combinations (detailed in methods section below). Table 1 shows a summary of total in-situ 
sample counts for each site, and the number of in-situ samples that were collected within 7, 5, 
and 2 days of a cloud-free satellite image for the Routine sampling sites. With increased 
temporal gaps between in-situ sample and satellite image acquisition dates the paired in-situ – 
satellite image sample counts increase, but the representativeness of the satellite data reduces. As 
detailed in the results section, regression analyses using the 2 day datasets consistently produced 
the highest correlations, making the use of 2 day datasets the most viable option for algorithm 
development. 
 
Table 1: Summary of paired in-situ and cloud-free satellite image counts for satellite images acquired 
with 7, 5, and 2 days of in-situ sampling dates.  
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Methods 
Historical Landsat surface reflectance images from 1984 to present for Path 43 and Row 

33 were acquired and process using the Google Earth Engine API and custom Python software 
developed as part of this project. The USGS converts Landsat TM (Landsat 5), ETM+ (Landsat 
7), and OLI (Landsat 8) top-of-atmosphere (TOA) reflectance to at-surface reflectance (SR) 
using the Landsat ecosystem disturbance adaptive processing system (LEDAPS) (for TM and 
ETM+)  and Landsat Surface Reflectance Code (LaSRC) (for OLI) atmospheric correction 
algorithms (Schmidt et al., 2013; USGSb, 2018). After atmospheric correction, Landsat TOA 
and SR images were visually (QAQCed) and sorted into cloudy and non-cloudy groupings in 
order to identify the highest quality images suitable for analysis. Cloud masks were also applied 
during the data processing using F-Mask (Zhu and Woodcock, 2012) to further ensure image 
quality.  

Select band ratios commonly used as water quality indices were computed and included 
in addition to the individual band reflectance. Previous water quality studies have identified good 
statistical relationships between satellite band ratios and both chlorophyll-and turbidity (Allen, 
2011; Barrett, 2016; Kloiber et. al., 2002). The most commonly used ratio for chlorophyll 
mapping is the Green to Blue ratio, however, different ratios can also be of value depending on 
the season and target constituent. For example, NASA’s Ocean Chlorophyll (OC) algorithm suite 
relies on empirical relationships using Blue to Green ratio (NASA, 2014). Chlorophyll strongly 
absorbs in the red and blue bands and reflects in the green and near infrared (NIR) bands 
(Barrett, 2016). Historically, blue reflectance has been associated with healthy systems, red 
reflectance has been associated with high sediment/turbid systems, and green reflectance has 
been associated with algal prone systems (Waxter, 2014). Ratios including the NIR band have 
also shown good skill in estimation of chlorophyll in turbid waters and coastal areas (Mohamed, 
2015).  

Landsat band data and band ratios and the NASA’s Ocean Chlorophyll 2 (OC2) predicted 
chlorophyll were computed, spatially averaged (based on a weighted reducer in Google Earth 
Engine) and extracted for each image/sample pair using a 30m buffer around the sampling 
coordinates. Earth Engine’s weighted reducer calculates an area-weighted average of all pixels 
falling within the 30m buffered zone. Bands processed include the Blue (450-510 nm), Green 
(530-590 nm), Red (640-670 nm), Near Infrared (NIR; 850-880 nm), Shortwave Infrared 1 
(SWIR1; 1570-1650 nm), and Shortwave Infrared 2 (SWIR2; 2110-2290 nm) (note: wavelengths 
apply to the Landsat 8 platform). Both SR and TOA reflectance data were processed in order to 
assess the utility and effectiveness of operational atmospheric correction algorithms. Each in-situ 
water quality sample was paired with the closest in time cloud-free Landsat image.  

After satellite and in-situ data were processed and organized, statistical analyses were 
performed to investigate correlations between the datasets. All statistical analyses were 
performed using custom Python scripts, including multi-variate, linear, and non-parametric 
regression (i.e. Spearman’s Rho), outlier analyses (1.5 Interquartile Rule), and trend tests 
(Kendall’s Tau). Specific python packages include pandas for data management (McKinney, 
2010), SciPy (Oliphant, 2007; Millman and Aivasiz, 2011) and sklearn (Pedregosa et. al., 2011) 
for regression and non-parametric trend testing, and Matplotlib for data graphing and 
visualization (Hunter, 2007). The following band ratios were included in statistical analyses - 
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Green to Blue (GtoB), Red to Blue (RtoB), Red to Green (RtoG), Green to NIR (GtoN), Red to 
NIR (RtoN), Blue to NIR (BtoN), and OC2 chlorophyll. The GtoB ratio has shown good 
agreement with algae concentrations collected from ocean and inland waters and is the basis for 
Ocean Chlorophyll algorithms developed by NASA (NASA, 2014).  

 
 
Results and Discussion 

The following section highlights results of in-situ samples, statistical correlations 
between in-situ and Landsat water quality metrics, the development of site-specific algorithms, 
and application of those algorithms for predicting periphyton chlorophyll-a concentrations. 
Nearshore in-situ periphyton chlorophyll-a concentrations show a distinct seasonality at all sites, 
with highest concentrations in winter and spring and lower concentrations in summer and fall 
(Figure 2). Minimum and maximum chlorophyll concentrations varied spatially, with higher 
concentration sites having increased seasonal variability.  
 

 
 
Figure 2: Boxplots of in-situ seasonal periphyton chlorophyll-a concentrations for each Routine sampling 
site. The center line within each box represents the median of the dataset, while each box extends to the 
quartiles of the datasets. Whiskers extend to 1.5 times the interquartile range with outliers represented as 
points falling outside.  
 

Both in-situ periphyton chlorophyll-a and satellite band data were log-normally 
distributed and were therefore log-transformed prior to all statistical analyses. Linear regression 
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(i.e. Pearson’s r-value) was used to assess correlation between periphyton chlorophyll-a and each 
satellite band/ratio. In general, SR datasets showed higher correlations and overall tighter 
relationships with nearshore water quality data over the TOA dataset. TOA reflectance is 
impacted by backscatter and absorption related to particulates, aerosols, and water vapor 
throughout atmospheric profile. SR datasets are processed to remove these impacts and provide a 
more accurate and temporally consistent representation of the surface reflectance. The improved 
SR correlations validate the effectiveness of the atmospheric correction algorithms, however, 
neither SR or TOA datasets showed sufficient statistical strength capable for developing a 
universal (i.e. lake-wide) algorithm for predicting periphyton chlorophyll-a. For example, Figure 
3 shows large scatter in chlorophyll-a concentrations relative to the GtoB ratio when including 
data from all sites and all time periods for Landsat images acquired within 2-days of a cloud free 
satellite image. Site-specific physical characteristics such as variability in bottom-type and water 
depth, and differences in the seasonality of periphyton chlorophyll-a concentrations are likely 
significant contributors to the overall scatter illustrated in Figure 3.  
 

 
Figure 3: Regression analysis of the Green to Blue band ratio (GtoB) versus periphyton chlorophyll-a 
concentrations (Chl A) from all routine sites where samples were collected within 2-days of a cloud free 
image. Although correlated (p-value < 0.05), the relationship is not strong enough to support predictive 
modeling across all sites. 
 

In-situ periphyton sampling at a consistent depth of 0.5m means that spatially coincident 
satellite pixels include reflectance not only from periphyton biomass, but also from the lake 
bottom. Intra-site variability in bottom substrate type, water depth, and heterogeneity reduces 
statistical power when assessing all sites together. To reduce the impact of intra-site variability, 
site-specific statistical analyses were performed and resulted in marked improvements, 
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highlighting the potential for site-specific algorithms to be developed at the annual time scale 
(Table 2).  
 
 
 
Table 2: Site specific linear regression analysis results between log-transformed in-situ periphyton 
chlorophyll-a (Chl A) and Landsat SR bands and band ratios using all in-situ samples collected within 2-
days of a cloud free image acquisition. Top) results with abs(r-values) > 0.5 are highlighted in green and 
results with abs(r-values) > 0.4 are shown in red. Bottom) results with p-values <0.05 are highlighted in 
green and results with p-values < 0.1 are shown in red. 

 

 
 
In order to further refine correlations beyond site-specific analyses, the data was further 

subset and analyzed by season. Regression analyses were repeated for all sites and band/ratio 
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combinations for winter (Dec-Feb), spring (Mar-May), summer (Jun-Aug), and fall (Sept-Nov). 
Site/season combinations with less than 5 samples were not assessed. Seasonal site-specific 
regression analyses showed additional improvements with multiple site/season combinations 
showing potential for predictive algorithm development (Table 3). 
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Table 3: Site specific linear regression analysis results between log-transformed in-situ periphyton chlorophyll-a (Chl A) and Landsat SR bands 
and band ratios using all in-situ samples collected within 2-days of a cloud free image acquisition separated by season. Top) Results with abs(r-
values) > 0.5 are highlighted in green and results with abs(r-values) > 0.4 are shown in red. Bottom) Results with p-values <0.05 are highlighted in 
green and results with p-values < 0.1 are shown in red. 
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In general, spring resulted in the highest correlations, likely due to higher concentrations 

of chlorophyll-a providing increased reflectance well beyond the noise. While winter also 
showed relatively high concentrations, correlations were hindered by the limited number of 
cloud-free satellite images available during winter. Figure 4 highlights a subset of site and 
season-specific correlations between in-situ and Landsat SR reflectance bands and band ratios. 
 

 
Incline West: Spring, NIR 
 

 

Rubicon: Winter, Blue to NIR 
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Pineland: Fall, Green 

 
Dollar Point: Summer, GtoB 
Figure 4: Regression plots and summary statistics for a select group of station/season 
combinations. Each site and season combination correlate with different bands and band ratios 
making the development of a universal, single basin-wide algorithm not feasible. 
 

Sub-setting site-specific imagery and in-situ data into monthly time periods helps to 
reduce potential effects from atmospheric conditions (i.e variability in particulates, aerosols, and 
water vapor within the atmosphere), turbidity, and periphyton bleaching, however, it also reduces 
the number of viable samples collected within 2 days of a cloud-free satellite image. This 
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threshold was relaxed to include imagery acquired within 5- and 7-days of in-situ samples, 
however, while there were more data points, correlations were reduced with higher temporal 
separation. Further complicating the analysis is the fact that different combinations of 
chlorophyll and turbidity can yield similar reflectance. Figure 5 illustrates how varying 
concentrations of chlorophyll-a and turbidity can result in non-unique spectral signals (i.e. 
colors). 
 

 
Figure 5: Diagram demonstrating the non-unique nature of chlorophyll/turbidity optics. Different 
combinations of colored dissolved organic matter (CDOM), chlorophyll, and turbidity can return 
similar spectral signals or colors (figure modified from Concha, 2015). 
 

In addition to the non-unique nature of hydrologic optics, previous studies have noted 
fluctuations in chlorophyll content due to solar bleaching effects (Ichimura, 1959). Specifically, 
Glooschenko and Blanton (1977) noted a dependence on light intensity with higher solar input 
causing more pronounced fluctuations during a chlorophyll study in Lake Ontario. Previous 
studies at Lake Tahoe note that nearshore periphyton changes in state and condition, including 
both green and slimy/smooth states, and white and carpet-like states (State of the Lake Report, 
2019). Periphyton bleaching at Lake Tahoe is potentially higher than other areas such as Lake 
Ontario, due to its high elevation and relatively clear waters, allowing for more shortwave 
radiation to penetrate the water column.  

While site-specific and seasonal correlations of in-situ periphyton chlorophyll-a and 
Landsat reflectance data showed promise for predicting periphyton chlorophyll-a, ideally 
statistical power of the predictive model would be improved before used for operational 
monitoring. To explore improving the statistical power of site specific models, multivariate 
regression was applied using multiple bands and band ratios at select site and season 
combinations. Multivariate analysis was performed using the three bands with the highest 
individual correlations to periphyton chlorophyll-a for specific sites and timeframes. In general, 
multivariate regression based on multiple SR bands increased correlations improving overall 
predicative skill, however, rigorous optimization to find what site-band-season combinations 
yield the best skill is required. This rigorous optimization along with inclusion of new satellite 
data (i.e. Sentinel 2 and 3) should be explored as part of follow-on work to this study.  An 
example result of the multivariate analysis for Incline West is shown in Table 4, where a single 
algorithm based on multivariate regression between SWIR2, RtoN, and RtoB and in-situ 
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periphyton data (i.e. including all data all seasons) was assessed (Table 4; adjusted r-squared: 
0.574, p-value: <0.01) and then applied to evaluate Landsat predictions against the in-situ data. 
 
Table 4: Incline West multivariate regression results between all available periphyton chlorophyll-a data 
and the corresponding Landsat SWIR2, RtoN, and RtoB bands and band ratios at the Incline West 
sampling site. 

 
 

Application of the Incline West multivariate regression model is illustrated in Figure 6. 
Comparing the time series of modeled versus measured in-situ chlorophyll-a concentrations 
shows relatively good agreement for time periods with overlapping data (Figure 6; Top). Landsat 
estimated chlorophyll-a concentrations follow the general five to ten-year variability of in-situ 
chlorophyll-a. Additionally, the Landsat estimated chlorophyll-a has the same level of temporal 
variability as the in-situ data at short time scales. These results suggest that the Landsat estimated 
chlorophyll-a can be used to fill in periods where in-situ data is limited or missing. Computing 
quarterly means of the Landsat time series reveals clear periodicity in predicted chlorophyll-a 
concentrations that track the in-situ data well (Figure 6; Bottom).  
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Figure 6: Top) Time series of in-situ (blue) and modeled (red) periphyton Chl A at the Incline West 
sampling site based on a multivariate regression using the SWIR2, RtoN, and RtoB bands and band ratios. 
Bottom) In-situ and modeled periphyton chlorophyll-a time series with Landsat estimates filtered to 
quarterly means.  
 
 Multivariate regression for site and season-specific combinations also shows potential for 
operational monitoring (Table 5: Rubicon Point Example). Similar to Incline West, a 
multivariate regression was performed for Rubicon Point, but developing separate models for 
each season, and applying those models to respective Landsat data and seasons to predict 
periphyton chlorophyll-a. Figure 7 illustrates a time series of Landsat estimated mean and 
maximum springtime (March-May) periphyton chlorophyll-a at the Rubicon Point site. 
Summarizing multiple predictions or in-situ samples over specific time periods (e.g. springtime) 
has the potential to reduce the temporal variability, and making interannual variability and 
possible trends more apparent.  
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Table 5: Multivariate regression results between spring (Mar, Apr, May) periphyton Chl A data and the 
corresponding Landsat SWIR1, Red, and Green bands and band ratios at the Rubicon Point sampling 
site.. 

 
 

 

 
Figure 7: Landsat estimated spring (March-May) periphyton Chl A at Rubicon Point based on 
multivariate regression using the SWIR1, Red, and Green bands. Mean (Top) and maximum (Bottom) 
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springtime (March-May) periphyton chlorophyll-a at the Rubicon Point site based on Landsat estimated 
values.  
 

In addition to exploring the potential to estimate the absolute concentration of periphyton, 
we explored the potential to estimate relative concentrations with respect to historical highs and 
lows for specific periods of record. Recent advances in cloud computing applications such as 
Climate Engine (Huntington et al., 2017) has created the ability for researchers and managers 
alike to produce anomaly maps, where the spatial distribution of water quality metrics can be 
assessed relative to the long-term average spatial distribution for a specific date or range of dates. 
Assessing relative concentrations through the calculation of spatial or temporal anomalies is 
useful given that there is uncertainty in measuring or predicting absolute concentrations, and 
there is also uncertainty in in-situ measurements with respect to how spatially and temporally 
representative those measurements are (due to variable sampling locations, and high degree of 
temporal variability as illustrated in Figure 6). To illustrate this point, an anomaly map of the 
NASA OC2 predicted mean chlorophyll-a was computed for May-June of 2014 using Climate 
Engine (Figure 8). A widely observed and publicized algae bloom during this time occurred near 
Regan Beach located in Southlake Tahoe (Figure 8; Left). The predicted high OC2 anomaly 
corresponded with public observations of the algae bloom (Figure 8; Right). While absolute 
concentrations will be uncertain, it is argued here that anomaly mapping has potential utility for 
monitoring relative concentrations of chlorophyll-a in both time and space.  
 

 
 
Figure 8: Observation of a well-known algae bloom during spring of 2014 near Regan Beach, South Lake 
Tahoe (left), and the corresponding anomaly map of the OC2 predicted chlorophyll-a using 
ClimateEngine.org. Green coloring along the lake’s shoreline corresponds with higher than average algae 
concentrations. 
 

Spring synoptic sampling at Kiva Point near South Lake, CA reported both high and low 
concentrations of chlorophyll-a over a 13-year sampling period. Anomaly maps of the green 
reflectance computed with Climate Engine for select years illustrate that periods of anomalously 
high and low green reflectance correspond well to periods of anomalously high and low in-situ 
periphyton chlorophyll-a. These results again highlight the usefulness of satellite-based 
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anomalies for monitoring and better understanding current conditions relative to long-term 
average conditions for specific locations and time periods. 

 
  

 
Figure 9: Spring synoptic periphyton Chl A time series at Kiva Point near South Lake, CA beside Green 
Band anomaly maps for periods of low, mid, and high concentrations. Green pixels represent higher than 
average green reflectance, while red pixels represent lower than average green reflectance. Climate 
Engine Links for above maps: Bottom, https://climengine.page.link/eK8e; Center: 
https://climengine.page.link/Haik; Top: https://climengine.page.link/Q48M  
 
 
Summary and Recommendations 

The purpose of this study was to broadly assess the potential for the use of satellite 
imagery that is atmospherically corrected using standard algorithms and is freely available for 
operational monitoring of nearshore periphyton at Lake Tahoe. Results from this study indicate 
that the use of Landsat satellite imagery for nearshore periphyton chlorophyll-a monitoring 
shows promise, however, site specific algorithms should be developed for producing acceptable 
results. Although Landsat-based remote sensing may not be able to provide skillful predictions of 
chlorophyll-a for all sites throughout the lake, it shows utility for monitoring periphyton growth 
for specific sites and seasons. Landsat’s unparalleled historical coverage (1984-present) make it 
invaluable for understanding long-term variability of nearshore water quality at Lake Tahoe. Test 

https://climengine.page.link/eK8e
https://climengine.page.link/Haik
https://climengine.page.link/Q48M
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applications of multivariate regression at Incline West and Rubicon Point shows utility for 
predicting inter-annual variability of chlorophyll-a observed in the routine sample record, and is 
potentially useful for gap filling and completing the historical record at sites with sufficient data 
coverage. The in-situ periphyton chlorophyll-a dataset shows large variability at short time scales 
(2 weeks to monthly), making short-term trends difficult to interpret. Anomaly mapping of 
periphyton chlorophyll-a was shown to correspond well with in-situ anomalies, and provides 
useful information about relative concentrations in space and time.  New developments and 
applications in remote sensing and machine learning show promise for more robust predictions 
where more conventional statistical approaches applied in this work fail. While our cursory 
statistical assessment of Landsat satellite and in-situ periphyton concentrations conducted in this 
study show some predictive skill using traditional statistical methods, the use of in-situ 
periphyton dataset for training machine learning models should be explored as follow on work to 
this study. 
 
Recommendations 

We recommend a collaborative review of existing data collection methods in the context of 
historic and future satellite image acquisitions. Specific areas for improvement could include:  

• Documenting precise GPS locations for all in-situ sampling  
• Targeting satellite overpass dates for in-situ sampling to improve the temporal alignment 

between satellite and in-situ sampling 
• Developing GIS polygons that represent potential sample area zones for improved spatial 

representation and averaging of satellite data  
• In-situ spectral monitoring to complement and refine satellite image surface reflectance 

estimates.  
• Further statistical modeling by season and site using multiple linear regression and the 

inclusion of new satellite data (i.e. Sentinel 2 and 3) 
• Use of in-situ periphyton data for training of satellite image based machine learning 

models (such as TensorFlow), and assessment of predictive skill of these higher level 
statistical approaches 

 
We recommend additional analyses similar to those performed in this study using new 

European Space Agency (ESA) operational satellite data such as Sentinel 2a, 2b, and 3. Sentinel 
2a,b are satellite missions that are “Landsat like” but have higher spatial and temporal resolution. 
Combining Sentinel 2a and 2b yields a 5-day revisit, at 10 m spatial resolution for red, green, and 
blue bands. Combining Sentinel 2 with Landsat 8 at 30m resolution yields a revisit of ~3 days. 
Sentinel 2a was launched in June of 2015 and Sentinel 2b was launched in March of 2017. 
Sentinel 3a was launched in February of 2016, and Sentinel 3b was launched in April of 2018. 
Sentinel 3 is primarily an ocean mission, however, there are numerous potential land and inland 
water applications. The revisit of Sentinel 3 is approximately 2 days, and the spatial resolution is 
300 m. Because Sentinel 3 was primarily designed as an ocean application mission, its spectral 
resolution is high compared to Landsat and Sentinel 2. Sentinel 3’s Ocean and Land Colour 
Instrument (OLCI) measures reflectance in 21 bands (Landsat 8 measures reflectance in 11 
bands) and is currently the only sensor in space able to detect cyanobacteria. The US EPA 
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recently developed an operational platform for monitoring cyanobacteria and other harmful algal 
blooms based on Sentinel 3 data (Schaeffer et al., 2018). Sentinel 2 and 3 data are available in 
Google Earth Engine and could easily be integrated into a future study that builds off and 
leverages software developed in this study. The potential to integrate Landsat with Sentinel 2 and 
3 data and improve water quality monitoring potentials at Lake Tahoe is promising and should 
be investigated further. In addition, the potential for application of machine learning models 
should be explored using Landsat and Sentinel data along with in-situ periphyton data to train 
these models. Models that can easily be applied to satellite data such as TensorFlow could be 
explored relatively quickly given that Google Earth Engine has integrated TensorFlow Neural 
Network functions (https://developers.google.com/earth-engine/tensorflow) and our team has 
specialized expertise and close connections with Google developers. 

In summary, the use of remote sensing is a feasible option for monitoring nearshore water 
quality at Lake Tahoe, however, there are challenges. Integration and use of new satellite data 
combined with targeted sampling aligned with satellite image acquisition dates could yield long-
term benefits for monitoring with satellite remote sensing. While other water quality remote 
sensing platforms are available, such as the use of piloted aircraft and drones, these platforms are 
expensive and extremely limited for long term operational monitoring and applications. We 
believe that investing in research and applications that combine in-situ data with freely available 
satellite remote sensing data is the best option for ensuring affordable, sustainable, and scalable 
long-term monitoring capabilities at Lake Tahoe. 
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