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I. Introduction 
 
Lake Tahoe is a world-renowned large oligotrophic lake valued for its water clarity and deep 
blue color that attracts millions of visitors every year. The majority of visitors interact with the 
edge or nearshore of the lake by spending time on Lake Tahoe’s beaches or walking along its 
shores. While calendar year mid-lake mean lake water clarity in Lake Tahoe by Secchi disk has 
been relatively stable with a slight decline since around 2000, there have both been declines in 
summer mean water clarity (Naranjo et al. 2022) and increasing reports of declines in nearshore 
water quality due to increased algae growth in the littoral zone, or what is known colloquially as 
“nearshore greening” (Naranjo et al. 2019, Vadeboncoeur et al. 2021). There is mixed evidence 
regarding the extent to which these changes in nearshore greening are occurring along the 
perimeter of Lake Tahoe (Atkins et al. 2021), but regardless, this issue has highlighted our 
limited understanding of what controls temporal and spatial variation in nearshore algae growth. 
High spatial heterogeneity in nearshore ecosystem productivity originates in part from variation 
in the degree of hydrologic connectivity with upland landscapes, which supply allochthonous 
nutrients and organic matter that support productivity and diversity in the littoral zone (Vander 
Zanden & Vadeboncoeur 2020). Thus, the goal of our project was to address the question, how 
do watershed processes contribute to temporal variation in Lake Tahoe’s nearshore water 
quality and which hydroclimatic factors and within-nearshore processes influence 
nearshore algal growth? 
 
Given the economic and ecological importance of clarity in the nearshore of Lake Tahoe, it is 
critical to understand the interactive controls which contribute to algal growth, the timing of peak 
growth rates, and what management actions may be implemented to improve water quality. Over 
the past decade, agency supported research activities to detect the presence of algal biomass 
along the nearshore of the lake included approaches such as remote sensing (Pearson & 
Huntington 2019), aerial imagery (Hackley et al. 2020), and in-situ boat driven transects with 
turbidity and chlorophyll-a sensors (Heyvaert et al. 2016). This prior work was an important first 
step in determining variation in the intensity and timing of algal growth, but scientists and 
managers still lack process-based understanding of variation in nearshore greening. 
 
Previous work in Lake Tahoe has suggested that nearshore productivity may be limited by 
nitrogen (i.e., nitrate (NO3-) and ammonium (NH4+)) availability (Reuter et al. 1986). Since 
2005, ammonium (i.e., a form of nitrogen (N) used and sometimes preferred by algae (Axler et 
al. 1983)) delivery has increased to the nearshore of the lake (Domagalski et al. 2021). Changes 
in nitrogen loading and uptake by benthic algae could be a factor contributing to the observed 
changes in algae growth because if nearshore algae is N-limited, algal growth will increase with 
N delivery. 
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Current methods of directly quantifying periphyton biomass through time cannot match the 
spatial and temporal resolution of daily gross primary productivity (GPP) estimates because of 
destructive sampling techniques (e.g., scrubbing rocks), complications of scaling up to 
understand regional patterns of production when growth is patchy, and intensive labor 
requirements (e.g., diving and laboratory processing of biofilms samples). Instead, ecosystem 
metabolism time series models fit to high frequency dissolved oxygen and temperature sensor 
data can advance our understanding of year-round productivity dynamics. We can then infer 
underlying variables (e.g., periphyton biomass) using mathematical models (Blaszczak et al. 
2023), thereby overcoming spatiotemporal inadequacies in physical sampling. 
 
The overarching goal of this project was to build a process-based understanding of how 
watershed-to-lake connections drive nearshore algal growth dynamics in Lake Tahoe. We 
addressed this goal through a combined approach of the following objectives: 
 

1. Generate time series of daily rates of modeled ecosystem gross primary productivity 
(GPP), an integrative metric of algal growth, at depths throughout the photic zone by 
monitoring dissolved oxygen, water temperature, light, and wind from weather stations. 

2. Monitor streamwater NH4+ and NO3- concentrations to determine watershed loading. 
Streamwater NH4+ is currently no longer monitored as part of the USGS Lake Tahoe 
Interagency Monitoring Program (LTIMP) despite increases in this chemical species. 

3. Quantify rates of NH4+ and NO3- uptake and N-fixation in benthic samples collected 
quarterly using established laboratory incubation methods. 

4. Modify and test time series models which integrate the results from objectives 1 and 2 to 
generate predictions of site-specific nearshore GPP through time. 

 
We describe our approach and findings in detail corresponding to each objective below. 
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II. Objective 1: Dissolved oxygen and estimated nearshore ecosystem 
metabolism time series at the outlets of Glenbrook and Blackwood Creeks 

II.A Introduction 

Historically, measurements of productivity dynamics in lakes have focused on the mid-water 
column and samples collected from the center of a lake; however, this sampling schema may 
underestimate the influence of nearshore (i.e., littoral) zones on total lake productivity (Vander 
Zanden and Vadeboncoeur, 2020). Nearshore zones can be more strongly influenced by upland 
processes that disconnect nearshore dynamics from those measured in the center of lakes. 
Recently, there have been reports of increases in filamentous green algae growth on the benthos 
(i.e., bottom) of nearshore zones in otherwise clear, oligotrophic lakes (Vadeboncoeur et al., 
2021), including Lake Tahoe (Naranjo et al., 2019). However, the extent to which filamentous 
green algal growth might be increasing around the edge of Lake Tahoe is debated as periphyton 
biomass monitored at 54 locations around the lake at 0.5 m depth did not show widespread 
increases since 1982 (Atkins et al. 2021). Yet, in the littoral fringe zone at 0.5 m depth, 
periphyton biomass might be considerably impacted by wave action and therefore further 
investigation is needed to understand how representative shallow zones are of the nearshore.  
 
Because of these discrepancies in determining whether the nearshore is experiencing changes in 
benthic productivity, high-frequency year-round measurements of nearshore productivity are 
needed to establish a baseline understanding of how littoral fringe zone (0.5 m) dynamics differ 
from those further offshore and examine which environmental factors (e.g., climate, nutrient 
inputs) may be influencing the changes in benthic algal productivity. Daily gross primary 
productivity (GPP) can be estimated from diel changes in dissolved oxygen (DO) and 
temperature which can be measured using high frequency sensors (Winslow et al. 2016, Lottig et 
al. 2021). GPP is a reflection of the amount of underlying autotrophic biomass as well as the 
responses of photosynthetic activity to variation in light, temperature, and hydraulic disturbances 
that might remove the biomass (Blaszczak et al. 2023). Daily ecosystem respiration (ER) can 
also be estimated using diel variation in dissolved oxygen as this process consumes oxygen 
throughout the day and night. Together, GPP and ER are collectively known as ecosystem 
metabolism and monitoring of their collective dynamics can improve understanding of the timing 
and magnitude of biological activity year-round to inform management actions (Jankowski et al. 
2021). 
 
Here, we deploy a series of instruments in the nearshore region of Lake Tahoe to quantify the 
differences in dissolved oxygen (DO) and metabolism dynamics (1) on contrasting east and west 
shore sites surrounding stream outlets and with depth, and (2) at locations located closer to and 
further from stream inlets (i.e., watershed outlets to the lake). We deployed instruments that 
continuously measured DO and water temperature in the nearshore at multiple water depths at 
the time of deployment including 3 m (shallow littoral), 10 m (mid-shallow littoral), 15 m (mid-
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deep littoral), and 20 m (deep littoral). All depths were instrumented and monitored from  
October 2021 to February 2023 (Project Stage I), while the shallow littoral zone was monitored 
until the fall of 2023 (Project Stage II). 

II.B Methods 

II.B.1 Site Description 

Lake Tahoe is an oligotrophic mountain lake situated at 1,898 meters above sea level and a 
maximum depth of 505 meters (Goldman 1988). The watershed surrounding the lake (800 km2) 
is primarily forested and comprises 63 different streams that drain into the lake (Goldman 1988). 
Recently, reports of seasonal periphyton blooms in nearshore regions of Lake Tahoe have 
increased, particularly during the late winter and early spring seasons (Naranjo et al., 2019), 
although long-term monitoring of periphyton blooms has not found evidence of correlations 
between increased human development along the lakeshore and periphyton biomass (Atkins et 
al., 2021). 
 
We focused sampling to the contrasting shores of Lake Tahoe that encompass varying levels of 
development, watershed slope, lake bathymetry, exposure to alongshore lake currents, and 
precipitation (Figure 1). The nearshore region of Lake Tahoe (<150 m depth) represents 19% of 
the overall surface area of the lake (Loeb et al. 1983) and can receive high nutrient inputs 
following winter storms and spring snowmelt (Naranjo et al., 2022) as well as wind-driven 
upwelling events in late spring and early summer (Roberts et al., 2021). The Blackwood Creek 
watershed on the west shore (29 km2) is primarily undeveloped and forested (Leonard et al, 
1979; Coats et al., 2016) and drains a more gradually sloping catchment that enters Lake Tahoe 
north of Tahoe Pines, California (39.107009, -120.158221) in a relatively steep and exposed 
nearshore region of the lake. The Glenbrook Creek watershed on the east shore (11 km2) is 
primarily forest at higher elevations with some development and wetlands at lower elevations 
(Leonard & Goldman 1981), and it drains a much steeper catchment that enters Lake Tahoe near 
Glenbrook, Nevada (39.088019, -119.940094) into the gently sloping and protected Glenbrook 
Bay. Although most annual precipitation in the larger Lake Tahoe watershed falls as winter 
snow, it may vary significantly between the west (mean annual precipitation [MAP] = 140 cm yr-

1) and east (MAP = 67 cm yr-1) shores (Coats et al., 2008). 
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Figure 1. Map of nearshore sampling locations, Blackwood (BW in blue), Glenbrook (GB in 
yellow), Sunnyside (SS in green), and Slaughterhouse (SH in orange). The conceptual diagram 
of catchment morphology depicts locations of instrumentation (miniDOTs, conductivity loggers, 
and PAR sensors) and sampling locations (yellow flags).  

II.B.1 Sensor deployment and maintenance 
Between 2021 and 2023, we deployed sensors in the littoral zone of Lake Tahoe in two stages - 
Stage I and Stage II as described below (Figure 2).  
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Figure 2. A timetable depicting instrument deployment on east and west shores of the lake and 
at various water depths during stages I and II of the project. Shaded boxes signify instrument 
deployment, black outlines indicate dates of instrument servicing, dotted outlines indicate dates 
of cleaning, and reasons for pauses in deployment are detailed in text boxes. Months containing 
stars indicate that cinder blocks coated with anti-fouling paint were deployed at that time. 

Stage I Sensor Deployment 
During Stage I, miniDOT DO and water temperature loggers with wipers (Precision 
Measurement Engineering, Inc.) were deployed via SCUBA at the mouth of two stream outlets, 
one on the east shore (Glenbrook Creek; GB) and another on the west shore (Blackwood Creek; 
BW). We deployed sensors in a “t-shaped” pattern, with three instruments deployed parallel to 
shore in a nearshore location (approximately 3m water depth at the time of deployment in June 
2021) 50 m apart from one another and three instruments deployed perpendicular to shore at 
increasing water depths. At the time of deployment by October 2021, the approximate total water 
depths included mid-shallow littoral (10 m), mid-deep littoral (15 m), and deep littoral (20 m) 
locations offshore of the stream mouths. The three shallowest sensors parallel to shore were each 
attached horizontally to cinder blocks with PVC and placed on the bottom, where the sensors 
were positioned approximately 0.25 m off of the lake bottom. We placed sensors immediately in 
front (NS2) of and approximately 50 m north (NS1) and south (NS3) of inflowing creeks to 
capture variable surface water inflow dynamics. To deter algal growth, we installed copper plates 
on all miniDOTs in October 2022 and sealed cinder blocks with waterproof masonry paint in 
June 2023. The three deeper sensors perpendicular to shore were attached to a moored buoy line; 
initially these sensors were deployed in the mid-water column (approximately 2m from the 
surface) but were moved to deeper positions in March 2022 (approximately 1m from the 
bottom). Data collection from these benthic, “t-shaped” arrays (n = 6 instruments each) 
continued until February 2023 on the east shore and June 2023 on the west shore. We deployed 
Odyssey Submersible Photosynthetic Active Radiation (PAR) Loggers with Odyssey PAR 
Wipers (Dataflow Systems Ltd, Christchurch New Zealand) vertically on the mid-shallow littoral 
zone depth (~10 m) directly offshore from the central miniDOT at each stream mouth recording 
PAR at every 15 minutes in October 2021 to September 2023.  
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Stage II Sensor Deployment 
After one year of data collection across all sites (October 2021 - October 2022), we examined the 
dissolved oxygen and temperature data and found limited diel variation indicative of biological 
activity at the mid-deep littoral and deep littoral locations. Therefore, we determined that a more 
efficent use of the miniDOT sensors, given the resources at hand and to meet the project 
objectives of understanding temporal and spatial variability in nearshore productivity, was to 
redeploy those sensors at a shallow littoral depth at a location paired with our existing sensor 
array but far from inflowing streams. 
 
Thus, during Stage II, we retained the same shallow littoral zone miniDOT sensors at the mouth 
of the same two stream outlets (Glenbrook Creek on the east shore and Blackwood Creek on the 
west shore), but removed miniDOT sensors from the deeper depths where a biological signal was 
not being detected. Instead, we shifted sensors from deeper locations to new shallow locations 
that were chosen to be away from a stream outlet (Figure 1). On the east shore, we deployed 
three miniDOTs (SHNS1, SHNS2, SHNS3) approximately 1.05 to 1.15 km north of the inflow 
of GB Creek but south of the inflow of the intermittent Slaughterhouse Creek (SH) in Glenbrook 
Bay in February 2023. On the west shore, we had already deployed one miniDOT with a wiper 
on a cinder block at the Sunnyside (SS; SSNS1) marina as part of another project in 
collaboration with Sudeep Chandra which is approximately 2.8 km north of BW in August 2021, 
and we then deployed two additional miniDOTs (SSNS2 and SSNS3) in June 2023. On both 
shores, we retained a single miniDOT deployed via the mid-shallow littoral moored buoy. We 
removed the remaining four deep buoys from both shores.  
 
To further characterize the environmental conditions in the nearshore of the lake, in 2023 
(February for GBNS2 and SHNS2, and June for BWNS2, and SSNS2) we added electrical 
conductance and temperature sensors (Onset HOBO U24, Bourne, Massachusetts) and light and 
temperature loggers (Onset HOBO Pendant MX Temperature/Light Pendant, Bourne, 
Massachusetts) onto the central cinder blocks at all four shores. Because of sensor issues, we 
only recorded PAR data from June 2021 to May 2022 at Glenbrook and lost DO data from our 
southernmost sensor at Sunnyside. All instruments were deployed and maintained via SCUBA 
and downloaded at least twice a year, and cleaned approximately every 3-4 months, except in 
2023 where sensors were cleaned every month (June to September). Data collection from these 
arrays parallel to shore (n = 7 instruments each) continued until September 2023. 

Sensor calibration 

All instruments arrived with factory calibration settings prior to deployment. However, to 
account for issues with sensor accuracy, we intercalibrated miniDOT sensors following the user 
manual. In brief, we saturated a bucket full cold of tap water with oxygen using a Micro Bubble 
Diffuser (Pentair Aquatic Eco-Systems, Apopka, FL), air, and ice to cool water temperatures to 
roughly 4 °C. We monitored water temperature and DO with a handheld meter to saturate the 
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water with DO. Once conditions plateaued, we turned off the bubblers and allowed sensors to 
continue recording every 1 minute. We averaged plateau concentrations of DO (mg L) at 100% 
DO saturation for 10 minutes across all DO sensors. We used a Extech SD700 barometer to 
measure the precise local barometric pressure, and calculated the theoretical DO saturation 
concentration using the Garcia-Benson model in the ‘calc_DO_sat’ function in the 
streamMetabolizer R package (Appling et al. 2018). We then determined how far off each sensor 
was from the theoretical DO saturation concentration and corrected data from each sensor using 
a sensor-specific offset. 

Sensor maintenance 
We serviced all sensors approximately every 3-4 months. We deployed wipers with each 
miniDOT and PAR logger to routinely wipe the sensor surface of the instrument. During 
servicing, divers would collect each sensor, bring it to the boat for physical cleaning and data 
download, and then return it to its previous location. 

II.B.2 Data cleaning 

Prior to using the data collected by the dissolved oxygen sensors in any data analysis or 
metabolism modeling efforts, we performed several steps to clean and filter the data. First, we 
removed any data from the days on which instrument deployment or retrieval occurred. Second, 
we removed data due to poor quality indicators from the instrument (sensor quality [Q] < 0.7) 
and wiper (wipe time < 4 seconds and/or average current > 140 mA) readings. Third, we 
compared raw dissolved oxygen data with diver photographs and removed data at times during 
which we suspected severe biofouling may have occurred; we took a conservative approach with 
this last filter, so if dissolved oxygen signals displayed greater-than-average diel changes but 
there were no photographs of the site available, we retained the data. Finally, we removed all 
data that fell outside of 3 times the standard deviation of a given deployment location (e.g., 
cinder block or buoy). Together, these four filters removed 376,249 observations or 24% of the 
data collected. Although Stage I began in October 2021, we focused our analyses beginning in 
March 2022 because of various equipment adjustments (e.g., missing wiper data) and 
malfunction (e.g., lack of data at Blackwood mid-deep littoral) that needed to be fixed. 
Therefore, the most complete version of Stage I data is from March 2022 to February 2023. 

II.B.3 Covariate Data 

 
We aggregated hourly light data (surface shortwave radiation flux downwards, W m-2) from the 
North American Land Data Assimilation System (Xia et al. 2012, NLDAS project 2021;  
NLDAS_FORA0125_H) converted it to PAR (μmol m−2 s−1) based on the conversion factor in 
Savoy et al. 2021 (multiplying it by 2.114), and interpolated 3-hour observations of barometric 
pressure (surface air pressure, Pa) and wind speed (near surface wind speed, m s-1, Beaudoing & 
Rodell 2020; GLDAS_NOAH025_3H). We aggregated precipitation (mm) and air temperature 

https://disc.gsfc.nasa.gov/datasets/NLDAS_FORA0125_H_2.0/summary
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1/summary
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(°C) data from the Parameter-elevation Relationships on Independent Slopes Model (PRISM 
Climate Group 2024 https://prism.oregonstate.edu/) and Snow Telemetry (SNOTEL) station data 
from sites 848 (Ward creek 39.14°N, -120.22°W, and at 2,056 m ASL) and 615 (Marlette lake 
39.16°N, -119.9°W, and at 2,403 m ASL); these data include precipitation events, accumulated 
precipitation, and snow water equivalent (SWE). 

II.B.4 Ecosystem metabolism modeling 
We estimated daily nearshore metabolism by implementing metabolism models “LakeAnalyzer” 
and “LakeMetabolizer” (Winslow et al. 2018) with recommended modifications based on Lottig 
et al. (2021) as well as Scordo et al. (2022) at each shallow littoral miniDOT location, including 
the locations surrounding the stream outlets at Glenbrook and Blackwood and the additional 
miniDOT arrays at Slaughterhouse (3) and Sunnyside (2, with 11 total). This model differs from 
many other models (e.g., the standard LakeMetabolizer R package) in that instead of fitting each 
day individually, the model is fit to the entire time series to generate daily metabolism estimates 
and model parameters are constrained to ecologically feasible ranges (i.e., GPP and ER must be 
positive and negative, respectively). 
 
We aggregated high-frequency (15 minute) measurements of DO from PME miniDOTs (in mg 
L−1), water temperature (°C), light from Odyssey® photosynthetic irradiance recording systems 
(PAR; μmol m−2 s−1), wind speed (m s−1), and barometric pressure (mbar) at roughly lake level 
(1,897 m ASL) to mean hourly observations. We constrained the degree of autocorrelation in the 
parameters through time using hierarchical variance parameters in the random walk components 
of the model. We fit the model to our observed dissolved oxygen and water temperature time 
series separately for all years (2021, 2022, and 2023) for each site via Stan (Carpenter et al. 
2017) run in R (R Core Team, 2020) using the ‘rstan’ package (Stan Development Team, 2020) 
as described in Phillips (2020), and Lottig et al. (2021). Lastly, we used the median of the 
posterior for each parameter for interpreting daily patterns in either GPP or ER (Scordo et al. 
2022).  

Gas exchange estimates (k)  

We estimated final gas transfer velocity (k in h-1) using a bivariate model based on wind speed 
and lake area to estimate K600 in (m day-1) (Vachon & Prairie 2013; Dugon et al. 2016):  

k600 = 2.51 + (1.48 * U10) + 0.39 * U10 * log10 (LA). 

Where U10 is wind speed (m s−1) at a 10 m height above the lake, and LA is lake area (m2). Then 
we converted K600 values to k using the ‘k600.2.kGAS’ function in the R package 
LakeMetabolizer, and normalized k by sensor-specific depth and observation frequency. We 
removed days with observations of wind speeds greater than 5.9 m s−1 in accordance with 
recommendations for the appropriate range of input data for estimating reasonable values of k 
(Vachon & Prairie 2013; Dugon et al. 2016). Lastly, we reduced the lake area to a third of 

https://prism.oregonstate.edu/
https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=848
https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=615
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Tahoe’s size (165.4 km2) to more appropriately estimate these parameters for a smaller nearshore 
zone.  

Characterizing benthic light 
We estimated the diffuse attenuation of PAR as Kd (m−1) at depth for each sensor based the log 
linear function (Rose et al. 2009): 
 

𝐾𝐾𝑑𝑑⬚ =
𝐿𝐿𝐿𝐿(𝐸𝐸0𝐸𝐸𝑧𝑧

)

𝑍𝑍
  

 
where Ez is PAR data from Odyssey PAR loggers (µmol m-2 s-1) at depth Z (m) which varied 
from 9.5 m to 11 m depending on lake level. We converted incoming shortwave radiation data 
(NLDAS project 2021;  NLDAS_FORA0125_H) from W m-2 to PAR to get surface irradiance 
(E0  in µmol m-2 s-1) . Additionally, we used publicly available data for 2021 and 2022 “1% depth 
PAR” from the “Tahoe_LTP_UV” station (Watanabe & Schladow 2023) which is roughly 200 m 
south of our instrumentation at 4.6 m depth to compare an infill missing estimates of daily Kd. 
We used these daily PAR Kd estimates to calculate the amount of hourly incoming PAR likely to 
reach each individual sensor depending depth as: 
 

I = E0 - E0 * exp(−𝐾𝐾𝑑𝑑 ∗ 𝑍𝑍𝑖𝑖
𝐾𝐾𝑑𝑑 ∗ 𝑍𝑍𝑖𝑖

) 

 
where I is light intensity (µmol m-2 s-1) and sensor depth Zi for each sensor ranged from 2.5 m to 
5.7 m depending on lake level depth (Winslow et al. 2018).  
 
Lastly, we used the photoinhibition photosynthesis-irradiance (P-I) curve (Steele 1962) to 
describe the relationship between GPP and light based on Lottig et al. (2021), and Scordo et al. 
(2022) implementation: 
 

𝑃𝑃𝐼𝐼  =  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝐼𝐼
𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜

𝑒𝑒𝑒𝑒𝑒𝑒 (1 −
𝐼𝐼
𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜

) 

 
where PI is the production rate at light intensity I, Pmax is the maximum production rate, and Iopt 
is the optimal light intensity. Photoinhibition of productivity is common in lakes (Staehr et al. 
2016). We allowed Pmax and Iopt to vary through time at a daily time scale.  

II.C Results 

II.C.1 Dissolved oxygen and temperature at multiple depths in the nearshore 
Dissolved oxygen (DO) concentrations measured between March 2022 and September 2023 
displayed a wide range (5.2-12.5 mg/L and 58-122 % saturation) as did water temperatures (1.5-

https://disc.gsfc.nasa.gov/datasets/NLDAS_FORA0125_H_2.0/summary
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24.7℃). During the Stage I deployment (March 2022 - February 2023), the nearshore sites 
displayed the greatest daily variability in DO, particularly during later winter and early spring 
(Figures 3 & 4). Conversely, temperature displayed the greatest daily variability during summer 
months and at deeper sites (mid-deep and deep littoral locations, Figures 3 & 4). During the 
Stage II deployment (March - September 2023), variability in daily DO was greatest at nearshore 
sites located near stream outlets, and this pattern was more pronounced on the east shore at the 
mouth of Glenbrook Creek (Figure 4). Similar to the first phase of deployment, there was greater 
variability in daily temperature during summer months in Stage II and typically at either the 
deeper site (i.e., shallow littoral) or at the site nearest the stream outlet (Figures 4-7). 
 

 
 

Figure 3. Unfiltered (no data removed) 15 minute dissolved oxygen data (mg L-1) from three 
miniDOTs across four instrumented shores (2021-2023). Where color represents site location, 
and dotted lines represent cleaning, solid lines represent deployment and downloads, and dashed 
lines represent copper plate installation and painted sealed block deployments.  
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Figure 4. Cleaned (A) Dissolved oxygen (% Saturation) and (B) temperature (℃) collected 
along the east shore near the Glenbrook Creek outlet during Stage I of the project (March 2022 - 
February 2023). Each panel presents data from the four depths instrumented in a separate row 
(shallow littoral (labeled as “nearshore”), mid-shallow littoral (labeled as “shallow lit.”), mid-
deep littoral (labeled as “mid-depth lit.”), and deep littoral). At the shallow littoral depth, data 
from all three cinder blocks is shown (NS1, NS2, NS3). 
 

 
Figure 5. (A) Dissolved oxygen (% Saturation) and (B) temperature (℃) collected along the 
west shore near the Blackwood Creek outlet during Stage I of the project (March 2022 - 
February 2023). Each panel presents data from the four depths instrumented in a separate row 
(shallow littoral (labeled as “nearshore”), mid-shallow littoral (labeled as “shallow lit.”), mid-
deep littoral (labeled as “mid-depth lit.”), and deep littoral). At the nearshore depth, data from all 
three cinder blocks is shown (NS1, NS2, NS3). 
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Figure 6. (A) Dissolved oxygen (% Saturation) and (B) temperature (℃) collected along the east 
shore near the Glenbrook Creek outlet during Stage II of the project (March - September 2023). 
Each panel presents data from the depths and locations instrumented in a separate row (nearshore 
(i.e., shallow littoral) near stream, nearshore (i.e., shallow littoral) far from stream, and shallow 
littoral (i.e., mid-shallow litoral)). At the nearshore locations, data from all cinder blocks is 
shown (NS1, NS2, NS3). 
 

 
Figure 7. (A) Dissolved oxygen (% Saturation) and (B) temperature (℃) collected along the 
west shore near the Blackwood Creek outlet during Stage II of the project (March - September 
2023). Each panel presents data from the depths and locations instrumented in a separate row 
(nearshore (i.e., shallow littoral) near stream, nearshore (i.e., shallow littoral) far from stream, 
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and shallow littoral (i.e., mid-shallow litoral)). At the nearshore locations, data from all cinder 
blocks is shown (NS1, NS2, NS3). 

II.C.2 Ecosystem metabolism estimates from the nearshore 

 Nearshore benthic metabolism estimates varied across different shore areas through time, 
yet all sites were heterotrophic (ER > GPP; Figures 8 & 9). Comparing fluxes for net ecosystem 
productivity (NEP) for sensors around either BW or GB creeks we found greatest amount of 
NEP tended to occur in early February 2023 (23.41 ± 5.17 nmol O2 m-3d-1) and that GPP ranged 
0.06 to 29.30 nmol O2 m-3d-1 and ER ranged from -29.80 to -3.44 nmol O2 m-3d-1. In contrast, GB 
had the highest amount of NEP in October of 2021 (6.51 ± 0.12 O2 m-3d-1), and have slightly 
higher productivity where GPP ranged 0.44 to 19.37 nmol O2 m-3d-1 and ER ranged from -19.26 
to -4.35 nmol O2 m-3d-1.  
  

 
Figure 8. Nearshore metabolism estimates as A) GPP, B) ER, or C) NEP in nmol O2 m-3 day-1 

for every four weeks (~monthly) June 2021 to September 9th 2023 for shallow depths (nearshore 
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or 3 m depth) across full time series June 2021 to September 9th 2023. Color represents shore 
location (BW in blue, GB in yellow, SH in orange, and SS in green).  
 
When comparing the magnitude of ecosystem metabolism for overlapping observations from 
four different shore areas in summer 2023 (June-September) we found that Sunnyside had the 
highest mean GPP (GPP: 4.03 ± 0.49 nmol O2 m-3d-1, and ER: -7.11 ± 0.12 nmol O2 m-3d-1), 
followed by Glenbrook (GPP: 3.82 ± 0.15 nmol O2 m-3d-1, ER:-9.27 ± 0.24 nmol O2 m-3d-1), and 
Blackwood (GPP: 3.26 ± 0.37 O2 m-3d-1 and ER: -9.97 ± 0.34  nmolO2 m-3d-1); with 
Slaughterhouse having the lowest relative fluxes of both GPP and ER (GPP: 3.05 ± 0.16 nmol O2 

m-3d-1, and ER:-7.07 ± 0.09 nmol O2 m-3d-1). Interestingly our stream location on the east shore 
(GB) tended to have much higher productivity relative to the site further away from an inflowing 
stream (SH), while this pattern was reversed for west shore locations as SS tended to have 
greater productivity relative to the western stream location (BW), which also had higher ER. 

 
Figure 9. The relationship of GPP to absolute value of ER 
in nmol O2 m-3 day-1 for every four weeks June 2021 to 
September 9th 2023 for shallow depths (nearshore or 3 m 
depth) across full time series June 2021 to September 9th 
2023. The dashed line represents the 1:1 line where points 
above represent autotrophy and points below represent 
heterotrophy. Pearson's correlation coefficient (r) between 
GPP and ER for each shore location is depicted in the top 
left corner of each plot. Color represents shore location 
(BW in blue, GB in yellow, SH in orange, and SS in 
green). 
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II.C.3 Spatial and temporal variation in upland and lake processes 

Across the monitoring period, average daily air temperature tended to be the greatest in mid-
August and ranged from 10.60 to 23.9°C (Figure 10). Similarly, average daily PAR at the lake’s 
surface ranged from 44.77 to 363.92 µmol m-2 s-1 and tended to be highest in May and remained 
high until early August (Figure 10). The highest rates of wind speed and precipitation rates 
occurred outside of the summer months, with average daily wind speeds ranging from 0.63 to 
10.81 m s-1 and average daily precipitation ranging from 0 to 159 mm across all sites (Figure 10). 
Wind speeds were similar across all sites (mean values: GB: 2.3 m s-1; BW: 2.4 m s-1; SH: 2.3 m 
s-1; SS: 2.6 m s-1). 
 

Table 1. Annual hydroclimatic metrics for accumulated SWE (mm), surface water 
yield in (m3  km-1) and average air temperature  (°C) from SNOTEL stations and 
stream gage data from Blackwood and Glenbrook catchments. 

Water year Site SWE (mm) Annual water yield (m3  km-1) Mean air temp (°C) 

2021 BW 75988 808629 7.06 

2021 GB 38754 125615 6.32 

2022 BW 74451 2316451 6.44 

2022 GB 54028 156622 5.86 

2023 BW 204311 4493548 5.04 

2023 GB 146517 1081897 4.20 

 
 
Examining variation in hydroclimatic conditions 2021-2023, we observed large differences in 
snow-water equivalence (SWE), melt rates, and stream flow both across years and shore 
locations. The Blackwood catchment on the west shore accumulated 32% more SWE on average 
and generated 82% more surface water relative to the Glenbrook catchment on the east shore, in 
part because of its larger size (Table 1). SWE accumulation and annual water yield varied 
strongly from 2021 to 2023 (Figure 11). 2021 was a dry year with early snowmelt and relatively 
low stream flow at both Glenbrook and Blackwood. 2022 had more precipitation events, but also 
more mid-winter melting events, especially at Glenbrook which had a relatively low annual 
water yield and less SWE accumulation relative to Blackwood (Table 1, Figure 11). In contrast, 
2023 was one of the top five wettest years in the Sierra Nevada (California Department of Water 
Resources 2023), and we observed 67% more SWE and 83% more annual surface water yield at 
both Glenbrook and Blackwood relative to 2021. 
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Figure 10. Seasonal climate trends of mean daily A) air temperature (℃), B) incoming solar 
radiation as PAR (μmol m−2 s−1), C) wind speed (m s-1),  and D) log precipitation (+1) (mm) for 
years 2021-2023 across our four shore locations. Color represents shore (BW in blue, GB in 
yellow, SH in orange, and SS in green). 
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Figure 11. Hydroclimatic conditions over time (October 1st 2021 to September 30th 2023) in the 
upland areas around our two sites near streams Blackwood (BW) and Glenbrook (GB).  A) 
annual accumulated snow water equivalent (SWE) (mm). Days of peak SWE occurrence are 
indicated by small circles and also in the barplot for the day of year of peak SWE. B) Delta SWE 
or the net change in SWE for each day (mm), where positive values indicate that precipitation 
accumulated as snowpack, and negative values indicate snow melt. The accompanying bar plot 
depicts the day of year of total snowpack melt. C) Log- transformed stream (+1) normalized to 
catchment area in m3 s-1 km-1. The accompanying bar plot depicts the day of year of total peak 
streamflow.  SWE data is from SNOTEL stations (848 and 615) and streamflow was transformed 
from USGS gages (10336660 and 10336730). 

II.D Conclusion 

Over the course of both stages of instrument deployment, sites located nearest to shore, 
particularly those located closer to stream outlets, displayed the highest daily variability in 
measured dissolved oxygen (DO) concentrations. Although the timing of changes and variability 
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in both DO and temperature varied across the east and west shore sites, the seasonal patterns 
generally mirrored one another. Past research has found benthic algal growth in nearshore 
regions of Lake Tahoe to be greatest in late winter and early spring (Naranjo et al., 2019), which 
may be one reason that, during the first stage of the project, DO variability was greatest at the 
shallowest sites from approximately February through May 2022. During the second stage of the 
project, we also found higher daily summer DO concentrations near the outlet of Glenbrook 
Creek compared to the site further away from an inflowing stream (called Slaughterhouse, but 
which is south of the actual intermittent stream inlet). This increase in daily fluctuations may be 
a result of increased flow from snowmelt entering the lake during the day (Kirchner et al., 2020), 
that can be highly-oxygenated because of turbulence and from being colder which increases 
oxygen solubility (i.e., oxygen solubility decreases with increasing temperature). Snowmelt in 
the summer of 2023 was delayed due to the large snowpack the previous winter (19.14 m, UC 
Berkeley Central Sierra Snow Lab, https://cssl.berkeley.edu/), which may have contributed to the 
increased DO variability measured through August near the Glenbrook Creek outlet. Together, 
our results suggest that these nearshore regions may be subject to strong physical and biological 
drivers of DO throughout the year, dynamics that might otherwise be missed if only limnetic, or 
deeper portions of the lake where the photic zone does not reach the bottom, are monitored. 
 
We found pronounced differences in the metabolic regimes across the two different shorelines, 
with higher episodic GPP and ER on the westshore. Throughout our monitoring period littoral 
GPP was somewhat synchronous with ER with BW having a slightly greater heterotrophic 
signal. Additionally, we expect these temporal differences to vary between water years, where 
we expect increases in streamflow to delay stream GPP with unknown consequences for the 
timing of peak littoral GPP.  
  



27 

III. Objective 2: Stream and lake water chemistry monitoring 

III.A Introduction 

High-elevation streams are thought to be nitrogen (N) limited as the microbial (uptake, 
assimilation, and fixation) and hydrologic processes (wet deposition, snowmelt, and streamflow) 
that control inorganic N availability and demand tend to be disconnected (temporally and 
spatially), allowing episodic nitrate losses despite biotic community activity (Stoddard 1995; 
Sickman et al. 2003). In areas like the Lake Tahoe Basin, years with greater precipitation have 
been associated with greater nitrogen deposition (Coats et al. 2016), and yet differences in 
precipitation retention, forest cover, and geology can lead to variable stream based N export 
(Domagalski et al. 2021). The pelagic environment in Tahoe is currently co-limited by both P 
and N, while the nearshore has shown patterns of N limitation (Coats et al. 2016; Naranjo et al. 
2019; Domagalski et al. 2021). Regional management agencies are concerned about the lake’s 
biogeochemical potential to facilitate algal blooms and threaten Lake Tahoe’s world famous 
water clarity. As such, there is a need to understand the extent to which inflowing streams can 
deliver nutrients to the nearshore of Lake Tahoe to contextualize the patterns of nutrient supply 
and subsequent growth in nearshore algae. 
 
It is well understood that nutrient and organic matter concentrations follow seasonal patterns of 
precipitation, surface water, and groundwater transport (Hagedorn et al. 2000; Johnson et al. 
2009); conceptual models of transport are based on historically cold and consistent winters 
where soils are thought to be frozen and hydrologically disconnected from downstream rivers, 
lakes, or groundwater (Brooks et al. 2011; Seybold et al. 2022). However, warming trends and 
the variability of precipitation timing and intensity in mountain regions can alter the availability 
of key resources like nitrogen, with unknown interactions with ecosystem energy fluxes (i.e., 
primary productivity and ecosystem respiration). Therefore, we set out to characterize seasonal 
rates of carbon and nitrogen cycling within paired catchments in the Lake Tahoe basin that 
accumulate different amounts of precipitation and subsequently have unique flow regimes.   

III.B Methods 

We collected regular samples (weekly to monthly) for water chemistry (porewater and surface 
water measurements of dissolved organic carbon, NO3- - N, NH4+ - N, TDN, and PO4-3- P), 
stream productivity (water chlorophyll-a, epilithic ash-free dry mass, and chlorophyll-a), 
sediment quality  (pH, bulk density, and organic matter), and used in situ sensors to monitor 
reach water chemistry (DO (mg/L), temperature (℃), and specific conductance (SPC in µS cm-

1)). Specifically, we instrumented streams with miniDOT DO sensors (5-minute observation 
intervals) to model daily stream metabolism (Appling et al. 2018), and HOBO U24 conductivity 
sensors to measure SPC. 
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III.B.1 Sampling Site Description 

The mountain streams that flow into Lake Tahoe occupy drainages composed of igneous rocks, 
mainly granite and andesite along the southern, eastern, and northern shores; while the western 
shore contains large outcrops of volcanic rock. The eastern shore has steeper slopes and creates 
smaller watersheds with steeper streams, while the western shore has more gradual valley 
formations and larger drainages. The topography in the basin also plays a role in directing 
orographic precipitation via a rain-shadow effect and causes the western catchments to 
accumulate up to twice as much winter precipitation allowing for strong intra-annual surface 
water variation in inflow streams (Reuter & Miller 2000). Therefore, we focused our monitoring 
efforts on contrasting a western drainage area Blackwood Creek, and an eastern drainage area 
Glenbrook Creek. Blackwood’s drainage area can receive 35% more average annual 
precipitation relative to Glenbrook based on point data from SNOTEL (Figure 12). Blackwood 
Creek flows through a 29 km² largely undeveloped watershed underlain by volcanic and surficial 
deposits. It has a history of activities such as logging (1880s-1920s), gravel excavation from the 
streambed/streambank (1960s), grazing, and fire (Reuter & Miller 2000). In contrast, Glenbrook 
Creek flows through a 10.65 km² watershed primarily composed of decomposed granitic rock. 
The upper watershed has historical logging (1860s-1900s), while the middle regions feature 
extensive highway road cuts. The lower watershed area is relatively flat and exhibits light to 
moderate development, including a golf course (Leonard & Goldman 1981). Both drainages are 
predominantly forested with conifers, including nitrogen-fixing species like mountain alder 
(Alnus incana), which may influence stream nitrogen loads (Leonard et al. 1979; Coats et al. 
2016). 
 
The geologic history that shaped the mountainous ridges above Lake Tahoe also played a large 
role in creating the unique patterns of bathymetry along the benthic environment of the 
nearshore. Lake Tahoe is thought to have formed 3.5 million years ago and was impacted  by a 
fault line causing steep sloping shorefaces along the western edge while the Glenbrook Apron 
acts as a shallow shelf formation along the eastern shoreface (Gardner et al. 1998). These 
dramatic differences along the shoreline in bathymetric depth are expected to allow for variation 
in off-shore water circulation. The alluvial depositional zone around the stream-to-lake interfaces 
are mostly composed of permeable andesitic and basaltic sandy soils, rocky cobles, as well as 
sporadic chunks of woody debris, with most hard substrates disappearing after three meters in 
depth (Naranjo et al. 2019). We focused our monitoring effort immediately around the creek 
mouths of both Glenbrook and Blackwood within the littoral zone (0–150 m lake depth for any 
distance within ~105 m or 350 ft of shore). While this area represents onlys 19% of the lake 
surface area but can contribute >60% of the total primary production (Loeb et al. 1983). 
 
We targeted our stream survey efforts near United States Geological stream gauge stations to get 
precise estimates of streamflow and average reach depth. We used USGS stations for (10336660, 
39.11°N, -120.16°W, and at 1900 m ASL) and (10336730, 39.09°N, -119.94°W, and 1901 m 

https://waterdata.usgs.gov/monitoring-location/10336660/#parameterCode=00065&period=P7D&showMedian=true
https://waterdata.usgs.gov/monitoring-location/10336730/#parameterCode=00065&period=P7D&showMedian=true
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ASL) for 15 minute observations of streamflow and water depth. We used daily stream 
metabolism models from Blackwood and Glenbrook creeks (Appling et al. 2018) for estimates of 
stream GPP or ER (g O2 m-2 d-1).  We used Onset HOBO U24 conductivity sensors to estimate 
groundwater influence and water density near the stream lake interface and in the nearshore. 
These high-frequency measurements of water chemistry were complimented by regular water 
and sediment nutrients (NO3, NH4, PO4, and DOC) and organic matter (epilithic and sediment 
biomass and chlorophyll-a) sampling (bi-monthly May- September, and monthly October-April) 
at the lower stream reaches, the inlet, as well as 0.5 m deep directly in front of the stream for 
each shore.  

 
Figure 12. Map of stream monitoring locations at Blackwood and Glenbrook creeks. The stream 
is highlighted in blue for Blackwood or gold for Glenbrook and sensor positions are noted with 
circles for in-stream miniDOTs and HOBO conductivity loggers. Upper photos depict the upper 
stream reaches and lower photos depict the downstream or lower reach location.  

III.B.2 Sample Collection 

Survey methods and sample collection: 
At each stream reach (Blackwood lower - BWL,  Blackwood upper - BWU, Glenbrook lower- 
GBL, Glenbrook - GBU), we established five transects above the sensor station, perpendicular to 
the flow of water, and spaced 10 meters apart for a total reach length of 50 m. For shallow 
shoreline littoral sampling, we set up three transects, one directly in front of the inlet and two 10 
m north and south of the inlet all at 0.5m depth. We also set up three transects to sample the 
inlet: (1) directly at the stream-lake interface, (2) 5 m upstream, and (3) 10 m upstream to collect 
sediment and rocks from. We always collected water samples and measurements 5 m upstream 
of the inlet and directly in front of the stream inlet at the lake. For off-shore sample collection, 
we used a combination of boat-based Van Dorn water sampling, and direct SCUBA collection 
when possible. We sampled water from the surface (0.5m) and benthos (3m), and when possible, 
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sediment adjacent to each of the three littoral DO sensors (NS1, NS2, & NS3). We collected all 
off-shore water samples in acid washed 1L bottles which were kept on ice and filtered the same 
day through combusted Whatman GF/F filters (0.7 μm pore size) into in acid-washed 60 mL 
HDPE bottles. Water samples were frozen at -20°C for chemical analyses at a later date. We 
collected sediment by scooping the top 5-10 cm of sediment from three random locations within 
1 m of each DO sensor into a ziploc lock bag for later sieving in the lab (see below).  
 
We measured water DO, temperature, SPC, and pH, within 1 m of the stream sensor 
deployments using a multiparameter sonde (YSI Professional Plus, Yellow Springs, OH, USA; 
Orion pH probe, Thermo Fisher Scientific, Waltham, Massachusetts, USA). We collected 
duplicate filtered water samples from the same location using acid-washed syringes and 
combusted Whatman GF/F filters (0.7 μm pore size, Whatman, Piscataway, NJ, USA) and stored 
in acid-washed 60 mL HDPE bottles frozen at -20°C for later chemistry analysis. We passed a 
total of 300 mL of water on each filter and stored them frozen at -20°C for later chlorophyll-a 
analysis. We sampled epilithic biomass by scraping three rocks selected at a random transect 
using a 6 cm2 plastic delimiter and toothbrush. We poured the composite scrape slurry into a 
1000-500 mL volume plastic bottle, diluted the slurry to the final bottle volume using stream 
water, and kept it chilled for later AFDM and chlorophyll-a analysis. We sampled sediment with 
a hand shovel to collect composite samples of the top 5-10 cm at three randomly selected 
transects, collecting three scoops per transect. We sieved using a stainless steel #10 2 mm 
opening sieve (VWR, Radnor, PA, USA) and collected subsamples off of this composite for bulk 
density, AFDM, pore water, sediment pH, and sediment chlorophyll-a. 

III.B.3 Laboratory Analysis 
In the lab, we weighed 10 mL of wet sediment to determine bulk density of every sediment 
sample collected. For sediment AFDM, we dried sediment samples at 60°C for 48 h and then 
combusted them at 500°C for 8 h to determine ash free dry mass (AFDM) and percent organic 
matter (%OM = ((dry weight – AFDM)/dry weight) × 100). For epilithic AFDM, we filtered 
100-250 mL of composite epilithic material on to a combusted Whatman GF/F filter (0.7 μm), 
dried the filtrate at 60°C for 48 h, and then combusted it at 500°C for 8 h to determine ash free 
dry mass and percent organic matter. We corrected for the amount of diluted composite 
processed and the area scraped (108 cm) (%OM = ((dry weight – AFDM)/dry weight) × 100  x 
percentage analyzed of total sample / 108 cm). For soil pH, we used an Orion Star A211 
Benchtop pH Meter (Thermo Fisher Scientific, Waltham, Massachusetts, USA) to measure the 
pH of a mixture of 3 g of dried sediment in 5 mL of 0.01 mol/L CaCl2, the addition of which 
lowers sediment pH by ~0.5 pH units compared to water pH but is advantageous for taking 
measurements (Carter & Gregorich, 2008). For porewater solutes, we added 3 ± 0.25 g of wet 
sediment and 25 mL of deionized to a falcon tube and vortexed it every 30 minutes for 4 h. We 
then rested the falcon tubes in a fridge overnight and centrifuged them the next day. We then 
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filtered the supernatant through Whatman GF/F filters (0.7 μm) and stored it in acid-washed 60 
mL HDPE bottles in a freezer at -20°C, until analyzed.  
 
We analyzed pore water solutes and filtered water samples for dissolved organic carbon (DOC), 
total dissolved nitrogen (TDN), ammonium, orthophosphate, and nitrate. We used a TOC 
analyzer with a TN module (TOC-V CPH; Shimadzu, Kyoto, Japan)  for DOC and TDN. 
Additionally we used SEAL AQ2 discrete analyzer (SEAL Analytical, Mequon, Wisconsin, 
USA) to analyze samples for ammonium (NH4+- N) with a detection limit of 0.002 (mg N L-1), 
orthophosphate (o-P) concentrations based on US EPA method 350.1 revision 2.0 and USEPA 
method 365.1 revision 2.0 (US EPA, 1993a, 1993b) with a detection limit of 0.402 (μg P L-1), as 
well as nitrate (NO3 - N) based on US EPA Method 353.2, Revision 2.0. with a detection limit 
0.003 (mg N L-1) respectively. Chlorophyll-a was analyzed on a Turner Designs Trilogy 
benchtop fluorometer. 

III.B.4 Data Analysis 

Characterizing flow regimes  
We calculated the portion of streamflow as baseflow or quickflow using the Eckhardt 

digital filter method based on the ‘EcoHydRology’ package in R to characterize baseflow 
conditions and help identify potential groundwater signals in surface water quality (Fuka et al., 
2018).  

Statistical methods for analyzing stream and lake water chemistry   

We used generalized linear mixed-effects models (GLMMs) to evaluate how nitrogen 
concentrations (as either NO3- - N or NH4+ - N ) and stream metabolism (GPP and ER) vary 
within stream catchments as a function of hydrologic conditions. We organized all data 
(collected, modeled, or aggregated from online sources) based on the water year (October 1st to 
September 30th). To assess the relationship between metabolism and hydroclimate we used 
GLMMS (Gaussian distribution with an identity link) on either ER data or log-transformed GPP 
data (with the addition of + 1 to minimize log biases). In each model, we included fixed effects 
for average daily observations of discharge (cms), SPC as proxy for water source (µS cm-1), 
water temperature (°C), and light (µmol m-2 s-1), as well as a random intercept term for reach 
location to account for the non-independence of specific reach identity (Blackwood lower as 
BWL, Blackwood upper as BWU, Glenbrook lower as GBL and Glenbrook upper as GBU). To 
avoid collinearity, we evaluated pairwise correlations between predictor variables and ensured all 
relationships were low (𝜌𝜌 ≤ |0.60) before including predictor variables into models. To examine 
trends in N availability and hydroclimate, we built individuals GLMMS with responses for either 
stream water or pore water concentrations of NO3- - N (mg L-1) or NH4+ - N (mg L-1), a mixed 
effect for streamflow (cms), and a random intercept term for reach location ( BWL, BWU, GBL, 
and GBU).  
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All models were built using the lme4 package (Bates et al. 2014) and implemented in R version 
4.3.1. We evaluated model fit by assessing the histogram of the residuals and comparing the 
variance residual model variance to the variance encompassed by the random intercept terms. 
Additionally, we checked for variance inflation using VIF (implemented in the car R package) 
and estimated the significance of individual terms using likelihood ratio tests (implemented in 
the lmerTest R package; Fox and Weisberg 2011; Kuznetsova et al. 2017), and obtained 
approximate R2 values for each model using the ‘rsquaredglmm’ function (implemented in the 
MuMin package, Barton and Barton 2015).  

III.C Results 

III.C.1 Inflowing stream water chemistry 

Variation in stream water flow  
Both Blackwood and Glenbrook creeks showed a strong association to snow melt and 
precipitation. During our monitoring period, base flow was highly correlated with quickflow in 
GB (R2 =0.89) relative to BW (R2 =0.78) with a greater amount of unexplained variance in BW 
surface water likely coming from snowmelt (Figure 13).  
 
GB creek has significantly higher (up to 88% higher) SPC relative to BW.  Exploration into 
within catchment variation shows that specific conductance (SPC) is 70% higher at Glenbrook 
lower and water temperatures are 12% lower than the upper location, indicating there may be a 
stronger groundwater influence in the lower reach of Glenbrook. At all sites, SPC concentrations 
increased under base flow conditions (BW: βQ: -15.59 ± 0.31, p< 0.001,  R2 = 0.48 and GB: βQ: 
-96.45 ± 2.26, p < 0.001, R2 = 0.52) and are indicative of groundwater contributions (Figures 14 
& 15). In general, SPC tends to decrease (dilute) with precipitation events for both the upper and 
lower reaches at BW, however this relationship may be reversed at GB, could indicate that 
terrestrial watershed processes may mediate the influence of precipitation on stream flow (Figure 
15).   
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Figure 13. Base flow and quickflow components of daily streamflow (cms) normalized for 
catchment area (km2) as for BW (top) and Glenbrook (bottom) as time series (left) or as 
correlations (right). Color represents flow component total streamflow (black), baseflow (pink), 
and quickflow (blue). The coefficient of determination (R2) of total flow to individual flow 
components is listed in the legend.  
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Figure 14. Time series of daily water temperature (°C) and specific conductance (SPC in μScm-

1) in lower reaches of BW (blue) and GB (yellow) from May 2021 to September 2023.  
 

 
Figure 15. Trends in specific conductance and catchment hydrology. Relationships between 
specific conductance (SPC in μScm-1) and precipitation at a) Glenbrook lower (gold points) and 
upper (light gold) and b) Blackwood lower (blue) and upper (light blue). Relationships between 
specific conductance (SPC in μScm-1) and log (discharge) as Q (cms-1)  at c) Glenbrook lower 
(gold points) and upper (light gold) and d) Blackwood lower (blue) and upper (light blue) where 
higher discharge is associated with decreased SPC in both creeks. R2 represents the overall GLM 
fit.  
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III.C.2 Nearshore lake chemistry 

Across all sampling locations (stream, interface, nearshore, and offshore) nutrient concentrations 
were low (Figures 16-19). At Blackwood and Glenbrook, surface water NO3 ranged from 0.003 
to 0.047 (mg L-1)  and 0.015 to 0.034 (mg L-1); NH4 ranged from 0.002 to 0.080 (mg L-1) and 
0.002 to 0.044 (mg L-1), PO4 ranged from 0.040 to 26.164 (μgL-1) and 5.308 to 28.010 (μgL-1), 
DOC ranged from 0.312 to 8.065 (mg L-1) and from 0.987 to 25.481 (mg L-1), and sediment 
organic matter ranged from 11.68 to 43.54 (mg mL-1) and from 18.88 to 68.82 (mg mL-1), 
respectively. We found NO3 and to a lesser degree NH4 were sensitive to seasonal patterns of 
snowmelt with spring pulses and fall declines in concentrations. Despite differences in discharge 
volume, Blackwood had lower average concentrations of nitrogen (0.012 mg L-1 NO3 and 0.012 

mg L-1 NH4) relative to Glenbrook (0.017 mg L-1 NO3 and 0.033 mg L-1 NH4). These differences 
were slightly more pronounced in the sediment porewater.  
 

 
Figure 16. Pore water nutrients NO3- (top), NH3 (middle), and PO4 (bottom) for stream (at 0.25 
m), interface (0.5 m), nearshore (3 m), and offshore (10 m or 20 m) locations. Where color 
represents BW (blue), GB (yellow), SH (orange), and SS (green).  
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Figure 17. Surface water chemistry nutrients NO3- (top), NH3 (second from the top), PO4 (second 
from the bottom), and DOC (mg L-1) for just stream (at 0.25 m) and interface (0.5 m) locations. 
Where color represents BW (blue) and GB (yellow). Horizontal gray lines represent detection 
limits. 
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Figure 18. Surface water chemistry nutrients NO3- (top), NH3 (second from the top), PO4 (second 
from the bottom), and DOC (mg L-1) for just stream (at 0.25 m) and interface (0.5 m), nearshore 
(3 m), and offshore (10 m, 15m, or 20 m) locations. Where color represents shore BW (blue), GB 
(yellow), SH (orange), and SS (green). Horizontal gray lines represent detection limits. 
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Figure 19. Contrasting relationships between nitrogen as NO3- - N in stream water at either a), 
BW reaches (blue) or b) GB (yellow) reaches and log transformed discharge as log(Q+1) in cms-

1. c) The relationship between nitrogen as NH4+ - N  at BW (blue) and GB (yellow) reaches, and 
log transformed discharge as log(Q+1) in cms-1. Trend lines represent a significant model fit 
(p<0.05), horizontal gray lines represent detection limits. 
 

III.C.3 Standing stock biomass AFDM and chl-a in the streams and nearshore 

Standing stocks of biomass 
The presence of cobbles tends to disappear after 1.5 m depth in the nearshore zones of 
Glenbrook (GB) and Blackwood (BW). We observed more epilithic (surface of rock) biomass 
and sediment organic matter in both the stream and interface locations at GB. This pattern 
changed in 2023 where BW accumulated greater amounts of sediment organic matter. 
Additionally, we consistently observed higher amounts of sediment organic matter at the 
nearshore location at BW relative to the GB (Figure 20).  
 
We found that epilithic biomass (in the stream and interface) was not representative of 
photosynthetic capacity. Biomass can be composed of both dead and photosynthetically-active 
material, and we found that higher amounts of biomass were not indicative of greater GPP and 
instead may be indicative of higher ER. We observed the greatest standing stock of chl-a in June 
of 2021 in BW and in August in GB (Figures 20-22).  
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Figure 20. For epilithic (surface of rock) chlorophyll-a (ug L-1) and biomass (mg cm-2) overtime 
for interface sites from October 2022 to September 2023 (left). Points and lines represent chl-a 
samples that were above detection limits and bars represent biomass. The plot to the right 
represents log transformed +1 chl-a and biomass. The dashed line represents a marginal positive 
correlation. Where color represents shore BW (blue) and GB (yellow). 
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Figure 21. Epilithic (surface of rock) chlorophyll-a and biomass over time for the stream sites 
from May 2021 to September 2023 (left). Points and lines represent chl-a samples that were 
above detection limits and bars represent biomass. The plot to the right represents log 
transformed +1 chl-a and biomass. Color represents shore BW (blue) and GB (yellow). 
 
 

 
Figure 22. Surface water chlorophyll-a (top) and pheophytin (bottom) overtime for sites from 
May 2021 to September 2023. Shape represents location stream, interface, nearshore, and 
offshore (10 m, 15m, or 20 m) locations. Color represents shore BW (blue), GB (yellow), SH 
(orange), and SS (green) 

Seasonal stream metabolism trends 
We saw seasonal differences in modeled stream metabolism, but no clear trends in epilithic 
biomass or sediment organic matter. In general, all monitored stream reaches were heterotrophic 
(ER > GPP). GPP tends to peak towards the end of summer or early fall, and occurred earlier in 
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2021, likely due to lower streamflow, a narrower stream width and high degree of shading, and 
great concentrations of sediment organic matter. The west shore sites tend to be more productive 
relative to the east shore sites, with the highest rates of both GPP (14.6 ± 1.43 g O2 m-2) and ER 
(31.74 ± 3.77 g O2 m-2) occurring at the upper station along Blackwood creek in August of 2021. 
The highest rates of GPP on the east shore occurred at Glenbrook in the lower reach in early June 
(2.78 ± 0.55 g O2 m-2) while the highest rates of ER occurred in October 2021 (16.39  ± 1.87 g 
O2 m-2) (Figure 23). We observed negative correlations between ER and GPP at BWL (R2 = 
0.03), BWU (R2 = 0.19), and GBL (R2 = 0.14). In examining the influence of gas exchange, we 
found strong negative correlations between ER and K600  at GBL (R2 = 0.69), moderate negative 
correlations at BWL (R2 = 0.41), and no correlation at BWU or GBU. 
 
Across all sites daily stream GPP was negatively correlated with discharge (βQ: - 0.11 ± 9.04e-3, 
p < 0.001), positively correlated with water temperature (βTemp: 7.33e-3  ± 1.13e-2, p < 0.001), and 
incoming PAR (βPAR: 8.05e-2  ± 1.21e-2, p < 0.001; R2 = 0.64; Figure 24). Similarly daily stream 
ER was positively associated with temperature (βTemp: 2.17 ± 1.13e-2, p < 0.001), and discharge 
(βQ: 1.72 ± 0.10, p < 0.001), and negatively associated with incoming PAR (βPAR: -0.70  ± 0.14, p 
< 0.001; R2 = 0.82; Figure 24). The strong correlation with ER and K600 suggests that physical 
mixing of oxygen into the stream water, especially at GBL, could have biased our metabolism 
estimates, and so modeled outputs are still considered to be preliminary while we collect 
empirical gas exchange estimates. 
 

 
Figure 23. Modeled daily gross primary productivity (GPP top) and ecosystem respiration (ER 
bottom) in g O2 m-2 d-1 from June 2021 to mid-July 2023 for all four instrumented reaches. Point 
color corresponds to site (Blackwood lower, Blackwood upper, Glenbrook lower, and 
Glenbrook), and bars represent standard error associated with each daily estimate of GPP or ER.   
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Figure 24. Coefficient plots of our parameter estimates associated with individual generalized 
linear mixed-effects models (GLMMs) for a) gross primary productivity (GPP) and b) ecosystem 
respiration (ER in g O2 m-2 ) mixed effects for stream water temperature (Temp in C), specific 
conductance (SPC in μScm-1), photosynthetically active radiation (PAR in µmol m-2 s-1) and 
stream discharge (in cms-1) and random intercept terms for site. Horizontal bars represent 
standard error associated with each parameter estimate. 

III.D Conclusion 

We observed a high degree of seasonality in streamflow from 2021 to 2023, but strong seasonal 
signals in stream metabolism were only observed in Blackwood Creek. We observed a high 
degree of variation in nutrient concentrations and biomass that was not coupled to other temporal 
surface water trends. The low levels of nutrients in our nearshore locations made detecting trends 
in nutrient dynamics challenging. Across the stream-lake interface, we observed higher 
concentrations of NO3- , NH4+, o-phos, and DOC in streams relative to interface and nearshore 
areas.   
 
We expected metabolism and nutrient cycling to be primarily controlled by streamflow and 
hydroclimatic conditions year to year. In mountain streams, variation in precipitation 
accumulation and run-off ratios determine stream discharge volumes and velocities (Poff & 
Ward 1992; Hammond et al. 2018). Stream discharge then acts as physical control on when and 
where in-stream communities can persist (Allan & Castillo 2021). Our observations of flow, 
precipitation, and SPC all suggest that Blackwood Creek is more sensitive relative to Glenbrook 
Creek to incoming precipitation and in regard to stream discharge as well as SPC changes. In 
Glenbrook, precipitation only explained 26% of variation in total annual water flow and 13% of 
variation in daily SPC. This greater precipitation signal could be a function of Blackwood’s 
larger watershed area, but could also reflect Glenbrook’s eastward slope orientation and higher 
percentage of forest cover which may create greater rates of evapotranspiration as well as canopy 
interception (Kirchner et al. 2020). 
 
We expected to observe stream productivity peaks only in late summer and early fall, when there 
is slower streamflow, greater light availability, and water temperatures which are all known to be 
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conditions that are ideal for benthic biomass growth. The pronounced heterotrophy in Glenbrook 
may reflect a greater supply of organic matter entering the stream relative to Blackwood, as well 
as a higher degree of canopy shading which could facilitate microbial respiration relative to 
primary productivity. While we did observe summer and fall GPP peaks within the study stream 
reaches at both catchments, we also observed early spring increases in GPP and ER that 
correspond with potential under-ice algal growth at Blackwood in 2022 and 2023. These patterns 
in stream GPP suggest that biogeochemical cycling of nutrients through autotrophic organismal 
uptake could be occurring in the winter despite cold temperatures and reduced light availability 
from snow and ice cover. 
 
Past work comparing winter nitrogen dynamics in the Sierra Nevada highlights the warmer 
marine snowpack as insulating above freezing temperatures in soil both facilitating large 
seasonal pulses of NO3 due to snowmelt transport of soil-nitrate (up to 75% of NO3 
concentrations in stream water), as well as the rapid NH4 immobilization by active winter time 
heterotrophic activity (Sickman et al. 2003; Brooks et al. 2011). Patterns of snow insulation and 
winter soil temperature could explain the contradicting correlations between nitrate and flow in 
our two catchments, where Glenbrook may tend to lose lake level snowpack more easily and 
therefore experience colder soil temperatures that can suppress winter soil biogeochemical 
processing. 
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IV. Objective 3: Quantifying rates of ammonium and nitrate uptake 

IV.A. Introduction 

Periphyton plays a key role in lake ecosystems by cycling nutrients, providing energy to the food 
web through primary production, and benthic metabolism, and creating habitat space for other 
organisms (Wetzel 2001; Vadeboncoeur & Steinman 2002). Previous work in Lake Tahoe has 
suggested that periphyton growth is limited by nitrogen (nitrate (NO3-) and ammonia (NH4+) 
availability in the littoral zone of the lake (Reuter et al. 1986). Examining spatial and temporal 
variation in rates of NO3- and NH4+ uptake can improve our understanding of how the benthic 
algal community responds to variation in N supply. 
 
We measured benthic NO3- and NH4+ uptake rates for the dominant substrate (sediment, or 
biofilm) across a range of habitat patches (the stream-lake interface at 0.5 m deep, the shallow 
littoral zone at 3 m deep, both directly in front of and away from streams) three times across the 
spring to summer transition (May, June, and July) for four different nearshore locations in Lake 
Tahoe (Figure 25).  
 

 
 

Figure 25. Sampling schematic of site locations on the east (Glenbrook and Slaughterhouse) and 
west shores (Blackwood and Sunnyside) of lake tahoe to collect benthic substrates to measure 
nitrogen uptake rates for either nitrate (NO3-) or ammonia (NH4+). The watersheds for the creek 
impacted sites are highlighted, and substrate collection locations are represented by triangles.  
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IV.B. Methods 

IV.B.1 Sampling Locations 
We monitored the littoral zone of both the east and west shores of the lake as described above 
(Figure 25). We collected samples from the dominant substrate (benthic algae or sediment) at 
four different sites on east (inlet of Glenbrook Creek and between Glenbrook Creek and 
Slaughterhouse meadow but hereafter called Slaughterhouse) and west (Blackwood Creek and 
Sunnyside) shores of the lake. Within each site, we collected samples from eight different 
patches, one patch at the stream-lake interface at (0.5 m deep), three patches in the nearshore 
directly in front of inflowing creeks (3 m deep), a patch  farther offshore in front of creek (10 m 
deep) directly in front of each creek, and three patches from an area at least 500 m away from an 
inflowing stream (at Sunnyside and Slaughterhouse meadows and also 3 m deep). 

IV.B.2 Field Sampling 
In order to characterize the seasonal heterogeneity in rates of nitrate and ammonia uptake for 
different littoral substrates we sampled the dominant substrate at the four sites in May, June, and 
July of 2023. For each incubation, we collected the dominant benthic substrate at each site 
(sediment, epilithic biofilm, or both) within five days of the incubation. The outlet (0.5 m) site 
demonstrated an equal mix of both sediment and biofilm, and so we performed incubation rates 
on both those materials. All other sampling locations (nearshore at 3 m deep and shallow littoral 
at 10m deep, both directly in front of and away from streams) were dominated by sediment 
which we sampled via SCUBA divers.  
 
We sampled epilithic biomass at the watershed outlet (stream inlet to the lake) at 0.5 m depth by 
scraping twenty rocks selected across a transect using a 6 cm2 plastic delimiter and toothbrush. 
To create a concentrated slurry, we squeezed a small volume of deionized water over the rock 
area that was scraped and the toothbrush. For every five rocks, we rinsed scraped material into 
50 mL falcon tubes. Thus, for 20 scraped rocks, we collected a total of 200 mL composite 
epilitihic biomass slurry. The samples were transported to the lab in a cooler on ice and then 
stored in a refrigerator at 4℃. We pipetted the slurry following shaking the tubes into designated 
incubation vials. We also subset the composite slurry for background biomass and chlorophyll-a 
concentrations.  
 
We sampled sediment with a circular core (8 cm diameter) marked at 1 cm to standardize the 
volume of collected sediment. With minimal disturbance to the sediment, the core was pushed 
into the mark and a metal tray was placed underneath to keep the sediment intact. This process 
was repeated three times per site location and placed in a composite ziploc bag. The Glenbrook 
10 m site was collected using a Ponar during the June and July incubations to prioritize safety. 
The samples were transported to the lab in a cooler on ice and then stored in a refrigerator at 4℃. 
We then homogenized sediment and siphoned water in excess of the sediment for each 
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composite sediment sample. For every samplin event, we collected lake water from the lake 
above the Blackwood 3m and Glenbrook 3m locations to be used for the incubations. 

IV.B.3 Laboratory Incubations 

 

 
Figure 26. Replicate sediment and algal incubations in water baths in a temperature-controlled 
cold room and set under light conditions to mimic those in the nearshore zone of Lake Tahoe. 

Incubation array 

We incubated known quantities of sediment or epilithic biomass with lake water (and blanks 
with only lake water) in triplicate acid-washed 40 mL clear borosilicate glass vials in a light and 
temperature controlled environment to mimic the ambient temperature and light conditions 
observed at the time of sample collection. We used water baths and secured each vial to clear 
plastic racks to maintain a consistent orientation (45° angle) relative to the lamps and minimize 
variation in the light or temperature each vial might experience throughout the course of the 
incubation (Figure 26). We incubated vials for approximately six hours and agitated every two 
hours to prevent stratification in the vials. We tracked vial numbers to account for locations 
within each water bath, exact vial spike concentrations, replication, and start and end times 
specific to each vial. We instrumented the water baths with submerged temperature and light 
sensors (Onset HOBO Pendant MX Temperature/Light Pendant, Bourne, Massachusetts) to 
evaluate how well the conditions in the water baths mimicked the target ambient temperatures. 
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Vial filling  
Within 48 hours prior to the start of an incubation, we weighed out 2 g of wet sediment or 
epilithic biofilm into each vial and recorded the mass. We filtered lake water through a coarse 
200 micron mesh to remove any large particles. We pipetted 25 mL of coarse filtered lake water 
into each vial 12 hours ahead of the nutrient additions and kept the samples in a dark and cold 
environment to allow for submerged substrates to equilibrate with the lake water. All west shore 
sites were incubated with water from Blackwood (0.5 m deep) and east shore sites were 
incubated with water from Glenbrook (0.5 m deep). We incubated ambient lake water alongside 
the incubation vials with sediment or biomass to account for any rates of pelagic uptake. 
Therefore, each of the three seasonal incubations included 288 individual vials for substrates, 
144 vials for lake water, and three additional DI water blank vials for a total of 435 vials across 9 
water baths (Figure 26). 

Nitrogen additions 

For uptake kinetic experiments, each set of triplicates (n = 3) received serial additions of 
ammonium chloride (NH4Cl) or sodium nitrate (NaNO3) to measure changes in nitrogen 
concentrations across six different nitrogen concentrations for either NO3- and NH4+. Serial 
addition concentrations ranged from 100-1,600 μg N L-1. We increased the spike concentrations 
from the first incubation in May 2023 (max: 1200 μL N) to the June 2023 incubation (max: 1600 
μL N) to increase the likelihood of N saturation at the highest N concentration. After six hours of 
incubation, we filtered 10 mL of sample water from each vial with an acid washed syringe and  
0.22 μm nylon syringe filter into a labeled acid-washed 15 mL falcon tube and froze it (-20 °C). 
We analyzed each filtered water sample (n = 435), as well as the serial additions of either NH4Cl 
or NaNO3 (n = 72) on a SEAL AQ400 discrete analyzer to determine NH4+ and NO3- values 
using methods described below. 

IV.B.4 Laboratory Sample Analysis 

We calculated bulk density (g mL-1), percent of sediment organic matter (%), as well as 
chlorophyll-a (ug L-1) concentrations on collected substrates to standardize the material in each 
incubation replicate vial by the amount of biologically active material present in the sample. We 
weighed 10-15 mL of wet sediment to determine bulk density. For sediment biomass, we dried 
sediment samples at 60°C for 48 h and then combusted dried samples at 500°C for 12 h to 
determine organic matter. The wet weight of sediment was used for the experiment, so we 
corrected for the percentage of sediment that was water. 
 

OM % = (dry weight – combust weight)/(dry weight) * 100 
% water  = (wet weight - dry weight)/wet weight 

Dried sample weight (g) = sediment weight - (sediment weight * % water) 
AFDW (g) = OM % * dried sample weight 
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For epilithic biomass, we filtered 25 mL of composite rock scrape on to a combusted Whatman 
GF/F filter (0.7 μm), dried the filtrate at 60°C for 48 h and then combusted it at 500°C for 12 h to 
determine organic matter. 
 
For soil pH, we used an Orion Star A211 Benchtop pH Meter (Thermo Fisher Scientific, 
Waltham, Massachusetts, USA) to measure the pH of a mixture of 3 g of dried sediment in 5 mL 
of 0.01 mol L-1 calcium chloride (CaCl2), the addition of which lowers sediment pH by ~0.5 pH 
units compared to water pH but is advantageous for taking measurements (Carter & Gregorich, 
2007). We took background water quality measurements using a YSI ProSolo sonde prior to 
collecting samples (temperature, barometric pressure, dissolved oxygen, and specific 
conductance). We measured the pH of the water by collecting a sample with no head space and 
immediately reading values with the Orion Star A211 Benchtop pH Meter upon return to the lab.  
 
For sediment chlorophyll-a, we subsampled 1-3 grams of wet sediment, which were then freeze 
dried, homogenized, and passed through a 180 μm sieve. For epilithic chlorophyll-a, we filtered 
10 mL of the composite epilithic biomass sample scraped from rocks onto a combusted 
Whatman GF/F filter (0.7 μm). We analyzed chlorophyll-a samples a Turner Designs Trilogy 
benchtop fluorometer using the hot ethanol extraction and acidification method (Roijackers 
1981; Sartory 1985). Additionally, we preserved 2 mL of sediment and epilithic biofilms in a 
25% glutaraldehyde solution for later taxonomic algal identification. We were unable to identify 
algae given the amount of sediment in each sample and therefore no taxonomic algal 
identification was possible. 
 
To extract pore water from composite sediment samples, we added 3 ± 0.25 g of wet sediment 
and 25 mL of deionized to a falcon tube and vortexed it for 60 seconds. We then rested the 
falcon tubes in a fridge overnight and centrifuged them the next day. We then filtered the 
supernatant through Whatman GF/F filters (0.7 μm) and stored it in acid-washed 50 mL falcon 
tubes in a freezer at -20°C, until analyzed. We collected filtered surface water samples each 
location using acid-washed syringes and combusted Whatman GF/F filters (0.7 μm pore size, 
Whatman, Piscataway, NJ, USA) which were stored in acid-washed 60 mL HDPE bottles frozen 
at -20°C for later chemistry analysis. 
 
We analyzed filtered surface and sediment pore water samples as well as water filtered from the 
incubation vials for dissolved organic carbon (DOC), total dissolved nitrogen (TDN), ammonium 
(NH4+), orthophosphate (o-Phos), and nitrate (NH4+). We followed the same methods outlined in 
Section III.B.3. We converted ammonia (NH3) concentrations determined by the AQ400 Discrete 
Analyzer to ammonium concentrations (NH4+) using the ambient pH and temperature values 
(Emerson 1975). For values below detection (NO3 < 0.003 mg/L; NH4 < 0.002 mg/L; o-P < 
0.402 μg/L) we set the concentration to half of the minimum detection limit (NO3 < 0.0015 
mg/L; NH4 < 0.001 mg/L; o-P < 0.201 μg/L) for analyses. 
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Our efforts to quantify N-fixation did not result in reliable data and are therefore not included in 
this report. 

IV.B.5 Data Analysis 

Nitrogen uptake calculations 
To get empirical estimates of added N spikes used as serial N additions for either NH4+ and NO3-  
we measured the concentration of our serial dilutions in May (0, 100, 200, 500, 800, and 1200 
μg/L), June (0, 100, 200, 800, 1200, and 1600 μg/L), and July (0, 100, 200, 800, 1600, and 2000 
ug/L) in DI water. We determined the pelagic uptake in both Glenbrook and Blackwood lake 
water by calculating the change in N concentrations pre and post incubation. We conducted 
triplicates of each sample and took the mean concentration. To isolate the uptake rates associated 
with benthic substrates (sediment or biofilm), we subtracted any change in N concentration 
associated with the corresponding serial dilutions of incubated lake water. We tracked incubation 
start and end time for each individual vial and normalized rates by the actual incubation length as 
it varied from precisely six hours. Lastly, we normalized each vial by the percent of organic 
matter associated with the sample and volume of lake water.  
 

Lake water uptake rate (μg N/ L hr) = (N concentration post-incubation - N concentration pre-
incubation)/time incubated 

N uptake rate (μg N/ L hr) = N concentration of sample/(time incubated - pelagic uptake) 
N uptake rate (μg N/ g AFDW hr) = (N uptake rate (μg N/ L hr) * 0.025 L) / g AFDW 

 
We calculated NH4+ and NO3- uptake rates by fitting dose-response curves to each of the eight 
location by substrate sets of incubations tested for either NH4+ and NO3-- uptake rates using the 
Michaelis Menten model implemented in via the drc package in R (Figure S1; Dugdale 1967; 
Reuter 1986; Ritz et al. 2015). These models calculate two parameters, Vmax for the maximum 
asymptotic response, and Ks which represents the half-saturation constant based on an alpha 
level of significance (p < 0.05) which we used to interpret whether uptake occurred (both Vmax 
and  Ks < 0.05) or just possible (at least  Vmax < 0.05 and Ks ≤ 0.05). 
 

𝑉𝑉 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑆𝑆
𝐾𝐾𝑠𝑠 + 𝑆𝑆

  

 
Where V is the uptake rate, S is the concentration of our serial additions of either NH4+ and NO3- 
(from 0 to 2,000 μg N/L), Vmax is the rate of uptake at saturating levels of S, and Ks, is the half-
saturation constant where V = Vmax/2). The drc package calculates a p-value for the model fit 
which indicates whether or not the mean model structure is appropriate (Ritz et al. 2015). 
Therefore, we only considered uptake rates as significant using the Michaelis Menten model 
when p < 0.05. 
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IV.C Results 

Environmental conditions during sample collection 

 2023 was an above average year for winter precipitation and snowpack accumulation. 
The timing of peak snow water equivalent or (SWE, 1785.6 mm) for our west shore locations at 
the inlet of BW creek did not really change between years (only a 2 day difference), but the 
magnitude of peak SWE was 23% lower (1364.0 mm) than the previous year. Melt rates varied 
from April to June, with total melt occurring five days earlier on 2023-06-15 at GB, and on 
2023-06-20 at BW (Figure 27 & 28). The exceedingly high snow year in 2023 corresponded to 
high stream water flows and similar timing in the peak flow across sites which occurred at the 
end of May for both sites (the 21st at 1.188 m3 s-1 km-1 and the 23rd at 0.198 m3 s-1 km-1 at 
Blackwood and Glenbrook respectively; Figure 28).  
 We collected samples for our uptake incubations on May 24th, June 26th, and July 21st 
of 2023. These dates corresponded to peak streamflow, receding limb, and baseflow conditions 
(Figure 28). Across all sites, background water temperature ranged from 5.19 to 14.46 °C in 
May, 6.00 to 15.04 °C in June, and from 9.02 to 20.18 °C in July. East shore sites Glenbrook and 
Slaughterhouse meadow were generally warmer than west shore sites Sunnyside and Blackwood 
(Figure 29). Similarly, we observed daily mean dissolved oxygen concentrations across all sites 
ranged from 8.86 ± 1.28 mg L-1 in May, 8.47 ± 0.28 mg L-1 in June, and from 7.66 ± 0.40 mg 
L-1  in July. The west shore site (BW) had higher daily DO in both May and June relative to the 
east shore, while the east shore site (GB) had higher daily DO in July (Figure 30).  
 

 
Figure 27. SNOTEL station estimates for snow water equivalent (SWE) in mm from nearby 
stations (BW: ward creek #3 represented in blue, and GB: marlette lake represented in yellow). 
Filled black circles represent incubation measurements, with the open circles representing the 
initial pilot incubation.  
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Figure 28. Streamflow (cfs) normalized by watershed area (in km) for BW in blue and GB in 
yellow. Filled black circles represent incubation measurements, with the open circles 
representing the initial pilot incubation.  
 

 
Figure 29. Mean daily water temperature from either YSI measurement at 0.5m depth or from 
miniDOT sensor at 3m and 10m depth with standard error bars present. Filled black circles 
represent incubation measurements, with the open circles representing the initial pilot incubation. 
The horizontal line represents the overall seasonal average across all the sites which was 11.22 
(°C). 



52 

 
Figure 30. Mean daily dissolved oxygen (mg L-1)  from either YSI measurement at 0.5m depth 
or from miniDOT sensor at 3m and 10m depth with standard error bars present. Filled black 
circles represent incubation measurements, with the open circles representing the initial pilot 
incubation. The horizontal line represents the overall seasonal average across all the sites 8.80 
(mg L-1). Color represents unique site locations and shape represents the depth of the sampling 
area.  
 
Background concentrations of water nutrients (mg L-1) were generally low (Figure 31). We 
observed the highest amounts of NO3-, NH4+, PO43-, and DOC at the stream lake interface. DOC 
and PO43- were highest in stream lake interface during May (PO43-: 0.014 ± 0.009 , and DOC: 
1.387 ± 1.465), while NH4+ and NO3- concentrations increased in June (NH4+: 0.001 ± 0.001 
and NO3-: 0.011 ± 0.001), and NO3- concentrations were highest in July (0.018 ± 0.009). For the 
immediately offshore sampling locations (3 m depth), we observed higher concentrations for 
nutrients in May (NO3-: 0.013 ± 0.001, NH4+: 0.007 ± 0.003, PO43-: 0.008 ± 0.001, and DOC: 
0.569 ± 0.150) that tended to decline in June and July. We observed a similar temporal trend in 
the deeper sampling locations NO3-: 0.014 ± 0.004, NH4+: 0.015 ± 0.004, PO43-: 0.007 ± 0.001, 
and DOC: 0.711 ± 0.267) and at slightly higher concentrations. 
 
 



53 

 
Figure 31. Concentration of NO3, NH4 (converted from NH3 in the figure), PO4 (measured as o-
Phos), and DOC from at 0.5m, 3m and 10m depth with standard error bars present for sites 
where replicate samples for the same location were collected. Color represents unique site 
locations and shape represents the depth of the sampling area.  
 

Nitrate and ammonium uptake rates 

 We attempted to replicate environmental conditions in each nitrogen uptake incubation in 
the water baths. Substrates collected in May were incubated at 11.61 ± 0.76 °C, substrates 
collected in June were incubated at 13.38 ± 0.74 °C, and substrates collected in July were 
incubated at 17.31 ± 0.52 °C. We expected to have 48 measurements for either NO3- and NH4+ 
uptake based on the eight unique site and substrate combinations in May, June, and July. We had 
a total of 60 possible combinations between months samples, site, substrate type, and analyte. Of 
those observations of converged uptake, only 35 contained probable estimates of either NO3- and 
NH4+ uptake (p < 0.05). Therefore, we also included estimates from uptake based on the average 
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net change in nitrogen concentrations after accounting for ambient water chemistry, organic 
matter, and incubation time differences. 
 

 
Figure 32. Estimates of NH4+ and NO3- uptake from epilithic biofilm and sediment collected 
from all depths (0.5m, 3m, and 10m) at the stream lake interface. Triangle shapes represent 
whether the estimate of nitrogen uptake came from a significant p value (<0.05) for Michaelis 
Menten models or not significant (circle) after accounting for ambient water chemistry, organic 
matter, and incubation time differences. The y-axis is on a log scale. 
 
Overall, we found that biofilms had the greatest variability of nitrogen uptake from 0.56 to 42.66 
± 17.8 for NH4+ and 0.40 to 225.03 ± 91.28 for NO3-, compared with sediments (Figures 32-35). 
Epilithic biofilms on the east shore tended to exhibit the highest nitrogen uptake rates, relative to 
biofilms collected from the west shore. Lastly, uptake rates for biofilms at both sites tended to 
increase in uptake rates from May to July for NH4 and decrease for NO3. 
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Figure 33. Estimates of NH4+ and NO3- uptake from epilithic biofilm. Triangle shapes represent 
whether the estimate of nitrogen uptake came from a significant p value (<0.05) for Michaelis 
Menten models or not significant (circle) after accounting for ambient water chemistry, organic 
matter, and incubation time differences. The y-axis is log scaled. 
 
In contrast, west shore sediments tended to have higher rates of nitrogen uptake for both NO3- 
and NH4+ relative to east shore sites. Across all sites we observed higher NH4+ uptake rates 
relative to NO3-, with the greatest rates of NH4+ occurring on the east shore at all sampled 
Glenbrook depths, as well as at Sunnyside (3m) on west shore. Additionally, rates of NH4+ 
uptake increased from across all sites from May to July while rates of NO3- uptake did not appear 
to change.  
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Figure 34. Estimates of nitrogen uptake NH4+ and NO3- uptake from sediment collected from the 
east and west shores, where point color corresponds to sampling location. The y-axis is log 
scaled. 
 
We observed comparable uptake rates on the west shore compared to the east shore (Figure 34), 
and at the stream-lake interface versus away (Figure 35). 
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Figure 35. Estimates of nitrogen uptake NH4+ and NO3- uptake from sediment collected at and 
away from the stream outlet, where point color corresponds to sampling location. The y-axis is 
log scaled. 

Comparison to historic uptake rates 

Reuter and others (1986) reported a maximum uptake of 30.3 ± 4.6 μg N g-1 AFDW h-l  for NO3 
and 18.7 ± 3.2 μg N g-1 AFDW h-l for NH4 during August 1981. We estimated substantially 
higher uptake rates for significant model fits, yet we attribute this discrepancy to very low 
amounts of AFDM that can inflate the uptake rate value. In addition, when only uptake rates that 
had a significant model fit are included, then rates are more comparable. 

IV.D Conclusion 

We quantified dissolved inorganic nitrogen uptake rates across four locations in the shallow 
littoral zone of Lake Tahoe. The dominant substrate for the sites was sandy apart from the outlet 
of the stream where larger cobble existed. We observed highly variable and high DIN uptake 
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rates, which were substantially greater than those reported in Reuter and others (1986). However, 
the very limited amounts of organic matter and biomass in the samples may have inflated the 
uptake rates and therefore we recommend further investigation before drawing substantial 
conclusions or using uptake rates in ecosystem models. 
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V. Objective 4: Predicting nearshore ecosystem productivity 

V.A Introduction 

Lakes are capable of integrating environmental processes from their surrounding landscapes, to 
reflect seasonal patterns of material transport, precipitation, and evapotranspiration (Adrian et 
al., 2009; Williamson et al., 2009). Within lakes, the nearshore habitat, or littoral zone, plays a 
key role in biogeochemical cycling and supporting biodiversity (Vadeboncoeur et al., 2003;  
Devlin et al., 2016; Vander Zanden & Vadeboncoeur 2020). The nearshore is characterized by 
greater substrate-surface water interactions which can elevate ecosystem productivity relative to 
the limnetic zone, but can also be highly heterogenous around a given lake perimeter 
(Vadeboncoeur et al., 2006; Cavalcanti et al., 2016). This high spatial heterogeneity in nearshore 
ecosystem productivity originates in part from variation in the degree of hydrologic connectivity 
with upland landscapes, which supply allochthonous nutrients and organic matter that support 
productivity and diversity in the littoral zone (Vander Zanden & Vadeboncoeur 2020). Here we 
examine how the degree of hydrologic connectivity as a function of streamflow and interannual 
precipitation influences the timing and magnitude of nearshore productivity. 
 
Stream-to-lake transition zones within the nearshore are ecosystem control points (Bernhardt et 
al., 2017) that can create the right combination of environmental conditions and delivery of 
limiting nutrients to stimulate high rates of biogeochemical activity (Johengen et al 2008; Jones 
2010). At the upland-lake interface, the direction and distance of stream water travels as a plume 
into the lake is determined by the streamflow velocity and temperature differences in the 
interacting waterbodies (Alavian et al., 1992; Roberts et al., 2018). In mountain lakes, cold 
stream water will sink into deep lake layers as underflow where suspended particles and 
dissolved matter can rapidly settle on in the benthos and facilitate hotspots of productivity 
(MacIntyre et al., 2006; Nielson & Henderson 2023). The processes responsible for streamflow 
generation in mountain ecosystems are strongly related to snowpack dynamics, 
evapotranspiration demands, and catchment morphology (Lyon et al., 2008; Harpold 2012; 
Kirchner et al., 2020). However, most mountainous regions in the United States are experiencing 
decreased snowpack persistence and earlier onset of melt (Musselman et al., 2021; Siirila-
Woodburn 2021 ; Hale et al., 2023), subsequently altering the timing of surface water and solutes 
to lake ecosystems from year to year (Dodds et al., 2019; Oleksy et al., 2021). Therefore, the 
individual influence of inflowing streams on nearshore productivity reflects a combination of 
contemporary surface water hydrology and antecedent watershed loading patterns and can be 
highly variable across relatively short timescales (Hanson et al., 2015; Ward et al., 2022). 
 
The degree to which a nearshore area is hydrologically connected to the uplands may result in 
heightened sensitivity to hydroclimatic variability. Past work has documented how hydroclimatic 
conditions can influence nearshore habitats through lake level rise and fall (Hofmann et al., 
2008; Scordo et al., 2021), groundwater intrusion (Rosenberry et al., 2015; Naranjo et al., 2019), 
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and terrestrial runoff (Cassan et al., 2019; McCullough et al., 2019) Given expectations for 
climate change to severely alter the patterns of precipitation through watersheds (Stewart 2009; 
Dai et al., 2018; Hale et al., 2023), the degree to which nearshore ecosystem processes reflect 
changes in hydrologic connectivity within catchments relative to internal lake processes is 
unclear. This understanding is important for preserving the ecosystem function, safeguarding 
water resources, and maintaining the quality of recreation in lake ecosystems (Williamson et al., 
2009; Moser et al., 2019). 
 
Despite the potential impact of nearshore metabolism on whole-lake carbon cycling, much of 
past limnological theory and current monitoring efforts often rely on extrapolations from single, 
open water stations or pelagic energetic models, neglecting within-lake heterogeneity and 
variation in watershed contributions. This oversight can lead to substantial bias in whole lake 
metabolism estimates depending on the characteristics of the lake. Capturing the relative 
contribution of nearshore metabolism to whole lake estimates should also take the relative 
influence of inflowing streams at the monitoring location into account because areas around 
inflowing streams may have shorter water residence times and water chemistry that is more 
related to upland stream processes relative to other reaches of the shoreline further from streams 
(Chmiel et al., 2020; Ward et al., 2022). 
 
This study investigates the relative influence of streams on variation in nearshore metabolism by 
measuring littoral water quality (water temperature, clarity, nutrients) and estimating ecosystem 
metabolism near and far from stream inlets continuously for 2.5 years. We conducted this work 
on two contrasting shores of Lake Tahoe (Nevada/California, USA), Patterns of nearshore water 
temperature warming (Ngai et al., 2013) are expected to facilitate summer algae growth, while it 
is thought that winter precipitation and corresponding groundwater recharge combined with 
wave action can enable nutrient fluxes that promote spring algal blooms (Naranjo et al., 2019; 
Vadeboncoeur et al., 2021). However, the high water clarity and possibility of UV- inhibition, 
combined with other environmental factors such as turbulence from high winds, precipitation, 
and streamflow, could disrupt these anticipated spring and summer peaks in algal growth.  
 
Here, we compared seasonal variance in nearshore metabolism regimes for two paired 
catchments in Lake Tahoe and examined the relative influence of inflowing streams on those 
regimes. Specifically we asked three questions: (1) What is the relative influence of uplands 
versus internal lake processes on nearshore metabolism? (2) How do site characteristics mediate 
the influence of streams on nearshore metabolism? (3) How does the influence of streams on 
nearshore metabolism change from dry to wet years?. We hypothesize that upland streamflow 
will influence nearshore productivity (GPP and ER) through increased material transport during 
discrete periods immediately following snowmelt while the internal lake processes (benthic light 
and water temperature) will drive nearshore metabolism regimes for the remaining majority of 
the year. We additionally expect these patterns to vary based on specific site-attributes such as 
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substrate (sand or cobbles), bathymetry (steep or shallow), benthic nutrients and organic matter, 
catchment area, and weather (solar radiation, wind, rain events). We predict nearshore 
metabolism at the western locations will be more sensitive to stream-mediated processes, as this 
shore has steeper bathymetry, greater snow accumulation, and a larger inflowing stream relative 
to the eastern locations. Finally, we expect drier years will be associated with elevated 
autotrophic conditions in the nearshore zone due to higher light availability as well as less 
surface water run-off and turbulent inflow mixing. Conversely, wetter years are expected to have 
strong stream influence associated with greater inflow discharge and delayed GPP maxima. Our 
overarching objective is to quantify the respective contributions of upland and internal lake 
processes to nearshore metabolism over time and across distinct stream-to-lake transitional zones 
in order to provide a mechanistic understanding of how and when hydrologic connectivity with 
uplands drives nearshore productivity. 

V.B Methods 

V.B.1 Data structure 

We fit our models to the daily gross primary productivity (GPP) and ecosystem respiration (ER) 
time series generated in Objective 1, and use covariate data from Objectives 1-3. 

V.B.2 Data analysis and time series modeling 

Time series - generalized linear mixed models  

We used autoregressive generalized linear mixed models (GLMMs) as well as structural 
equation models (SEM) to assess the different mechanisms for how streams influenced 
nearshore. Our goals were to characterize how streams could (1) influence nearshore metabolism 
through the magnitude, timing, and temperature of streamflow, (2) biogeochemically alter 
nearshore metabolism through the delivery of nutrients and organic matter, and (3) to investigate 
the relative influence of streamflow versus within-lake conditions (e.g., lake temperature, 
precipitation events, wind speed, and benthic light) that have been hypothesized drive GPP and 
ER. As metabolism is an inherently autoregressive processes relying on a 24 hour light cycle, we 
analyzed the autocovariance and partial autocorrelation of GPP and ER time series using the 
‘acf’ and ‘pacf’ functions in R to establish appropriate lags and temporally de-trend the 
autocorrelation structure of our response variable from other measured covariates (Venables & 
Ripley 2002).  
 
We modeled the direct effects of physical stream process on daily nearshore GPP or ER at either 
BW or GB using the glmmTMB package (Brooks et al. 2017), with log-normal error 
distributions, a nested random effect (Bolker et al., 2009) for site location (BWNS1, BWNS2, 
BWNS3, GBNS1, GBNS2, and GBNS3) within shore location (BW, GB, SH, and SS) as well as 
a random effect for year of observation (2021, 2022, and 2023). We transformed the absolute 
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value of ER (|ER|) to allow for both covariate effects to be interpreted at the same scale as GPP 
as well as the application of a log-normal error distribution. We subset our data for complete 
observations (n = 1464) of scaled covariates for daily stream water SPC (μS cm-1), catchment 
area normalized stream flow (cms-1 km-2), and stream water temperature (°C) and ensured 
collinearity relationships between scaled predictor variables was low (𝜌𝜌 ≤ 0.60) before 
proceeding with statistical models. For each GLM, we checked checked for variance inflation in 
each of our GLMs using VIF (implemented in the car package) (Fox and Weisberg, 2019), 
estimated the significance (P > 0.05) of individual terms, used manual comparisons of model fit 
(residual distributions and AIC scores implemented in the lmerTest package) (Fox & Weisberg, 
2011; Kuznetsova et al., 2017), and obtained model R2 values using the function rsquaredglmm 
(Barton & Barton, 2015). We implemented this approach in R version 5.0 (R Development Core 
Team, 2023). 

Structural Equation Modeling (SEM) 
We modeled the combined direct and indirect effects of catchment normalized mean daily 
streamflow (m3 s-1 km-1) on daily GPP and ER (mmol O2 m-3 d-1) at both BW or GB by fitting 
three Bayesian SEMs for GPP and ER, benthic light (μmol m-2 s-1), and water temperature (°C). 
We combined all models as Bayesian piecewise structural equation models (SEM) (Lefcheck 
2016; Brown et al., 2023). SEMs can be used to evaluate a network of ecosystem processes to 
inform controls on ecosystem function while accounting for indirect pathways (Lefcheck et al., 
2018). We tested the following models, 
 
(1) 

log(GPPt i  or |ERt i| + 1) = β0 + β1 x log(GPPt-1  i  or |ERt i| + 1) + β2  x benthic PARt i +  β3 x water 
temp.t i+ β4 x  log(streamflow)t i +  μt i + 𝜖𝜖ti  

μi ~ N(0, σ2μ ) and  𝜖𝜖t i ~ N(0, σ2)  
 

(2)                          
  benthic PARt i = 𝛿𝛿0 + 𝛿𝛿1 x log(streamflow)t i + μ”t i+ 𝜖𝜖”t i  

μ”i ~N(0, σ2μ” ) and  𝜖𝜖”t i ~ N(0, σ”2)  
 

(3)  
 water temp.t i = γ0 + γ1 x log(streamflow)t i + μ’t i+ 𝜖𝜖’t i  

μ’i ~N(0, σ2μ’ ) and  𝜖𝜖’t i ~ N(0, σ’2)  
 
We constrained this analysis to days with streamflow less than flows with exceedance 
probabilities greater than 5% (BW = 1.11  and GB = 1.00 m3 s-1 km-1) to model log transformed 
catchment normalized streamflow as a Guassian distribution. We fit models using the brms 
package (Bürkner 2021) with three chains, each running for 9,000 iterations (4,500 warm up), an 
autoregressive term for daily GPPt-1 or |ERt-1|, and a random effect for site (i = 3). We log 
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transformed (+1) GPP and |ER| to allow for Gaussian probability density functions, and scaled 
other model covariates, benthic light, lake temperature, and streamflow (catchment normalized) 
to allow for direct comparisons of path coefficient strength. We reported the mean posterior, and 
upper and lower credible interval for each parameter estimate with an 𝑅𝑅� > 1.05. 

Structural Equation Modeling - Precipitation Effects 

To examine how the influence of streams on nearshore metabolism might change from dry to 
wet years, we contextualized how other hypothesized metabolism controls like benthic light 
(μmol m-2 s-1) and lake temperature (°C), and precipitation (mm) may impact nearshore 
metabolism (GPP or |ER|, mmol O2 m-3 d-1). using We built individual Bayesian SEMs (Brown 
et al., 2023) using the brms package (Bürkner 2021) for each shore (BW, GB, SH, and SS) with 
parameters for log transformed benthic light, lake temperature, and precipitation (+1), on a 
subset of overlapping observations (February to September 2023, GPP = 750 and |ER|= 747) to 
include dynamics away from streams for 11 different sites across four different shores (BW, SS, 
GB, and SH) using the following model, 
 

log(GPPt i  or |ERt i| + 1) = β0 + β1 x log(GPPt-1  i  or |ERt i| + 1) + β2  x benthic PARt i +  β3 x water 
temp.t i+ β4 x  log(precipitation)t i +  μt i + 𝜖𝜖ti  

μi ~ N(0, σ2μ ) and  𝜖𝜖t i ~ N(0, σ2)  

V.C Results 

V.C.I Relative influence of environmental drivers of nearshore metabolism  

Stream dynamics within the nearshore 
From April to September 2023, stream water typically entered as underflow, as the difference 
between inflowing streamwater density and lake water density (i.e., ∆ρ) was rarely positive 
(Figure 36). Therefore, inflowing stream water is likely to make contact quickly with the 
nearshore benthic zone. Our best fit model to explain variance on the full time series in either 
daily GPP or ER for the three locations immediately around the inlets of BW or GB creeks 
contained two day autoregressive terms, as well as covariates for average daily log-transformed 
streamflow, stream temperature, wind speed, benthic light, and log-transformed precipitation. 
We found that GPP was negatively correlated with stream flow (βlog(flow): -0.245 ± 0.088, p = 
0.006, r2 = 0.61) and positively correlated with wind speed (βwind sp.): 0.020 ± 0.007, p = 0.007, r2 
= 0.61), and marginally correlated with stream water temperature (βstream temp.): 0.015 ± 0.008, p = 
0.071, r2 = 0.59). While daily ER was positively correlated with PAR (βPAR.): 0.013 ± 0.005, p = 
0.011, r2 = 0.66). 
 
When exploring these relationships for daily GPP or |ER| through Bayesian structural equation 
models (SEM), we observed that the influence of streamflow on nearshore productivity varied 



64 

with catchment, and was generally more robust for the west shore, BW (Figures 38 & 39). 
Streamflow had a direct positive influence on GPP at BW (mean; 95% credible interval, βflow to 

GPPt: 0.05; 0.01 to 0.08), but only a marginal positive influence at our eastern catchment GB (βflow 

to GPPt: 0.02; -0.02 to 0.06, Figure 38). Across both shores benthic water temperature had positive 
influence (BW: βtemp. to GPPt: 0.06; 0.01 to 0.10 and GB: βtemp. to GPPt: 0.03; 0.00 to 0.07) on 
nearshore GPP; while benthic PAR had a negative influence on nearshore shore GPP (BW: βPAR 

to GPPt: -0.05; -0.08 to -0.01 and GB: βPAR to GPPt: -0.05; -0.07 to -0.02). However, daily GPP at 
both shores was most strongly related to the day prior's GPP (BW: βGPPt-1 to GPPt: 0.81; 0.77 to 
0.85 and GB: βGPPt-1 to GPPt: 0.78; 0.73 to 0.83). 
 
In terms of confounding effects, streamflow decreased lake temperature (BW: βflow to temp.:-0.52; -
0.58 to -0.46 and GB: βflow to temp.:-0.81; -0.85 to -0.76) and benthic PAR (BW: βflow to PAR:-0.22; -
0.29 to -0.16 and GB: βflow to PAR:-0.39; -0.45 to -0.31) at both catchments. The indirect effect of 
streamflow on GPP can be estimated by multiplying the posterior distributions for streamflow 
based path coefficients. Here we found the indirect effects of streamflow on nearshore GPP was 
for BW was 0.005 increasing the overall effect of streamflow by 10% (βflowT to GPPt : 0.06), while 
the indirect effect of streamflow on GPP at GB was slightly higher 0.007 increasing the overall 
stream effect of streamflow by 25% (βflowT to GPPt : 0.03). We additionally evaluated the role of 
streamflow on ecosystem respiration (ER) for the same subset of data, but found streamflow did 
not influence ER at either shore (Figure 39). While streamflow maintained a negative influence 
on lake benthic temperature and light, benthic light marginally decreased ER (BW: βPAR to |ERt|: -
0.02; -0.03 to -0.00 and GB: βPAR to |ERt|: -0.05; -0.07 to -0.02) and benthic temperature had no 
noticeable impact. Daily ER was also highly related to the day prior’s ER at both shores (BW: 
β|ERt-1|. to |ERt|: 0.92; 0.90 to 0.95 and GB: β|ERt-1| to |ERt|: 0.72; 0.67 to 0.77). The indirect effect of 
streamflow on nearshore ER was still marginal across both shores (BW: βflowT to |ERt| : 0.002 and 
GB: βflowT to |ERt| : 0.003).  
 
 

 
Figure 36. The difference between inflowing stream water density and lake water density as 
(∆ρ) based on temperature and specific conductance of the streamwater and lake water using the 
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International Thermodynamic Equation of Seawater TEOS-10 (Feistel 2008; Roberts e al. 2018). 
Negative values indicate that stream water is entering the lake as underflow. 
 
 

 
 
Figure 37. Relationships between log-transformed (+) daily GPP (top) or |ER| (bottom) and 
environmental covariates, average daily log-transformed streamflow, stream temperature, wind 
speed, benthic light, and log-transformed precipitation at BW (blue) and GB (yellow). Point 
shape represents sensor position; circles for sensors centrally located in front of streams, 
triangles for north of streamflow, and squares for south of streamflow. Solid lines represent 
statistically significant linear relationships, while dashed lines represent marginal relationships.  
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Figure 38. Results from Bayesian SEM for log transformed (+1) GPP at BW (in blue) and GB 
(in gold). a) The SEM structure for how GPPt may be a function of streamflow, lake temperature, 
benthic light and GPPt-1,  with mean posterior estimates and standard error color coded by shore 
in boxes along the path coefficients. Arrow weight represents relationship strength and box color 
for each parameter represents the type of process associated with a given parameter (light blue 
for stream, dark blue for lake, and gray for autoregressive). b) the posterior estimates colored by 
shore BW (in blue) or GB (in gold) for each parameter relationship. The vertical line marks 
when posteriors overlap zero for any parameter. 
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Figure 39. Results from Bayesian SEM for log transformed (+1) |ER|at BW (in blue) and GB (in 
gold). a) The SEM structure for how |ERt|may be a function of streamflow, lake temperature, 
benthic light and |ERt-1|,  with mean posterior estimates and standard error color coded by shore 
in boxes along the path coefficients. Arrow weight represents relationship strength and box color 
for each parameter represents the type of process associated with a given parameter (light blue 
for stream, dark blue for lake, and gray for autoregressive). b) The posterior estimates colored by 
shore BW (in blue) or GB (in gold) for each parameter relationship. The vertical line marks 
when posteriors overlap zero for any parameter. 

Other environmental drivers of nearshore ecosystem metabolism  
To contextualize other environmental drivers of nearshore metabolism, we calculated mean 
weekly fluxes of GPP and ER on a subset of observations (February to September 2023) and 
compared them to the metabolism estimates for shore locations away from inflowing streams 
(SH and SS). Our best fit model to explain variance in either weekly GPP or ER for 11 
individual sites nested within four different shore locations for the summer of 2023 included an 
one temporally autoregressive term, as well as covariates for weekly average lake temperature, 
wind speed, benthic light as well as number of precipitation events.  Weekly GPP was positively 
correlated with wind speed (βwind sp.: 0.020 ± 0.007, p = 0.007, r2 = 0.61) and lake water 
temperature (βlake temp.: 0.018 ± 0.009, p < 0.001, r2 = 0.59). While weekly ER was negatively 
associated with lake water temperature (βlake temp.: -0.025 ± 0.009, p = 0.006, r2 = 0.65).  
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Additionally, in SEMs for daily GPP or |ER| benthic light and precipitation had a small negative 
influence on both GPP and ER, while lake temperature had a small positive effect on GPP and 
ER. We observed GPP was potentially suppressed by light across all locations (BW: βPAR  to GPPt: 
-0.24, -0.45 to -0.03;  SS: βPAR  to GPPt: -0.17, -0.64 to 0.30; and SH: βPAR  to GPPt: -0.20, -0.53 to 
0.12), except the stream-impacted east shore (GB: βtemp. to GPPt: -0.01, 0.14 to 0.11). Temperature 
appeared to stimulate GPP at BW (βtemp. to GPPt: 0.23, 0.09 to 0.37) and to a lesser degree at SH 
(βtemp. to GPPt: 0.04, -0.11 to 0.19). Temperature also appeared to stimulate ER at for our west 
shore sites (BW:  βtemp. to |ERt|: 0.03, -0.03 to 0.08 and SS: βtemp. to |ERt|: 0.04, 0.01. to 0.08), but 
potentially suppressed ER at east shore locations (GB: βtemp. to |ERt|: -0.01, -0.04 to 0.02 and SH: 
βtemp. to |ERt|: -0.02, -0.04. to 0.01). Precipitation had a small negative effect on GPP at all locations 
(BW: βprecip. to GPPt: -0.03, -0.10 to 0.04,  GB: βprecip. to GPPt: -0.01, -0.08 to 0.07, SH: βprecip. to GPPt: -
0.01, -0.18 to 0.10, and SS: βprecip. to GPPt: -0.01, -0.18 to 0.10), but a small positive effect on ER at 
SS only (SS: βprecip. to |ERt|: 0.01, -0.01 to 0.03) 
 

 
Figure 40. Relationships between log-transformed +1 weekly GPP (top) or ER (bottom) and 
environmental covariates, average weekly, lake water temperature, wind speed, benthic light, and 
total number of precipitation events at BW (blue), GB (yellow), SH (orange), and SS (green). 
Solid lines represent statistically significant linear relationships, while dashed lines represent 
marginal relationships.  
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Figure 41. Results from Bayesian SEM for log transformed (+1) |ER|at BW (in blue), GB (in 
gold), SS (in green), and SH (in orange) for a subset of overlapping data from all four sites 
(February to September 2023). a) The SEM structure for how GPPt or |ERt|may be a function of 
precipitation, lake temperature, benthic light and |ERt-1|,  with mean posterior estimates and 
standard error color coded by shore in boxes along the path coefficients. Arrow weight 
represents relationship strength and box color for each parameter represents the type of process 
associated with a given parameter (light blue for climate processes like precipitation, dark blue 
for lake, and gray for autoregressive). b) The posterior estimates colored by shore for each 
parameter relationship. The vertical line marks when posteriors overlap zero for any parameter.  

V.D Conclusion 

We observed relatively weak correlations between nearshore metabolism and stream flow and 
stream temperature. When exploring stronger causal relationships via SEMs that incorporate the 
combined indirect and direct influence of streamflow on nearshore GPP and |ER| suggest that 
streamflow does facilitate GPP, and may indirectly facilitate |ER| by reducing benthic light at 
both locations. Benthic metabolism is expected to be a function of light, water temperature, 
residence time and nutrient availability (Hoellein et al., 2013; Bernhardt et al., 2018; Hotchkiss 
et al., 2018). However, Lake Tahoe is a large, high elevation lake renowned for its cold water 
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temperatures and clarity, so much so that it is likely ultraviolet (UV) solar radiation in 
summertime can suppress GPP and result in benthic algal bleaching (Vinebrooke & Leavitt 
1996, Naranjo et al., 2019). We observed confounding indirect impacts of streamflow on benthic 
light and water temperature. Streamflow reduced benthic light intensity, which may have 
reduced benthic communities exposure to harmful UV radiation. However, the release from UV 
photoinhibition may have been restricted by the simultaneous decrease in water temperature, 
which may thermally limit biologic processes associated with GPP and ER. When considering 
the causal effect of light, temperature, and precipitation on all four shore locations with 
overlapping observations, we found that water temperature had a small positive effect on GPP 
and ER, while benthic light suppressed GPP and ER especially at BW, the effect of precipitation 
varied with location. Precipitation tended to decrease GPP at all locations and stimulated ER at 
SS.  
 
This analysis is a step towards linking upland processes (i.e. stream hydrology and stream 
metabolism) with downstream processes (i.e. nearshore metabolism) to determine the degree of 
control mountain streams exert on net ecosystem productivity dynamics in the littoral zone at the 
inflow of watersheds.  
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VI. Conclusions and Recommendations 
 
The overarching goal of this project was to develop a process-based understanding of how 
watershed-to-lake connections drive nearshore algal growth dynamics in Lake Tahoe. We 
addressed this goal through a combined approach of high-frequency sensor deployment and 
maintenance, ecosystem metabolism modeling, laboratory incubations, and routine monitoring of 
water chemistry and other parameters. 
 
We accomplished the following: 

1. We generated over two years of daily estimates of ecosystem metabolism (gross primary 
productivity and ecosystem respiration) from multiple locations on both the east and west 
shores of Lake Tahoe close to and far away from stream inlets. 

2. We measured NH4+ and NO3- concentrations in surface water samples from both 
Glenbrook and Blackwood creeks and the nearshore of Lake Tahoe for over two years. 

3. We quantified rates of NH4+ and NO3- uptake in benthic samples of the dominant 
substrate type collected during peak streamflow, the receding limb, and baseflow 
conditions in 2023 from multiple locations in the nearshore using established laboratory 
incubation methods. 

4. Finally, we used a combination of time series models and structural equation modeling to 
integrate the results from objectives 1 and 2 and improve understanding of the direct and 
indirect effects of hydroclimatic variability on observed patterns in ecosystem 
metabolism in the nearshore. 

 
The data we collected as part of this project and the ecosystem metabolism estimates we 
generated demonstrate how variable ecosystem productivity is in time and space in the nearshore 
of Lake Tahoe. Traditional approaches to quantifying algal activity in the nearshore (i.e., direct 
sampling of benthic biomass) may miss periods of peak biological activity due to the challenges 
associated with field sampling. Although maintenance of the sensor arrays during the exceptional 
winter of 2023 was challenging, we were able to capture the data necessary to estimate a 
complete time series of metabolic activity across two years with very different hydroclimatic 
conditions.  
 
To improve the capacity of scientists and managers to monitor enough nearshore locations to 
capture a broader range of spatial heterogeneity in nearshore productivity and understand the 
factors controlling it, we recommend the continued and expanded use of high-frequency sensors 
distributed throughout the nearshore of the lake. We recommend that these sensors are not only 
at stream inlets, but also capture dynamics at locations further away from inflowing streams. 
Extending the duration and spatial distribution of high-frequency sensors in the nearshore and 
collecting additional ancillary data necessary to be able to model metabolism will provide novel 
insight into nearshore dynamics that have been previous overlooked.  
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Appendix 1. Supplementary Figures 
 
 

 
 
Figure S1. Example Michaelis-Menten uptake kinetics models for ammonium and nitrate fit to 
incubation data from July across GB and BW for sediment from 10m depth. NH3 (ammonia) as 
labeled in the figure was adjusted to NH4 (ammonium) in the analyses. Not all incubations 
reached saturation (indicated by a straight line), while others did (indicated by a saturating curve 
such as for NO3 from GB 10m in the lower right hand corner). 
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